

GigaDevice Semiconductor Inc.

Arm® Cortex®-M3/4/23/33 32-bit MCU

Application Note

AN016

AN016
Build GD32MCU development environment based on cmake tool

2

Table of Contents

Table of Contents ... 2

List of Figures .. 3

List of Tables .. 4

1. Introduction .. 5

2. Development environment constructione ... 6

2.1. Install cross-compilation tool ... 6

2.2. Install C/C++ MinGW compiler .. 9

2.3. Install Cmake tool .. 16

2.4. Install Vscode and plug-ins .. 18

2.5. Install Openocd .. 20

3. CmakeLists file writing .. 21

3.1. CMakeLists.txt and Cortex-M3.cmake files in the root directory 22

3.2. CMakeLists.txt file in the gd_libs folder ... 23

3.3. CMakeLists.txt file in the src folder .. 24

4. Compile, download and debug ... 26

4.1. Compile and download ... 26

4.2. Debug ... 30

5. Revision history ... 33

AN016
Build GD32MCU development environment based on cmake tool

3

List of Figures

Figure 2-1. Select download of GUN Arm Embedded Toolchain .. 6

Figure 2-2. GUN Arm Embedded Toolchain installation process 1 .. 7

Figure 2-3. GUN Arm Embedded Toolchain installation process 2 .. 7

Figure 2-4. GUN Arm Embedded Toolchain installation process 3 .. 8

Figure 2-5. GUN Arm Embedded Toolchain installation process 4 .. 8

Figure 2-6. GUN Arm Embedded Toolchain installation process 5 .. 9

Figure 2-7. Test whether the GUN Arm Embedded Toolchain is installed successfully 9

Figure 2-8. MinGW-W64 choose to download and install .. 10

Figure 2-9. MinGW-W64 installation process 1 ... 10

Figure 2-10. MinGW-W64 installation process 2 .. 11

Figure 2-11. MinGW-W64 installation process 3 .. 11

Figure 2-12. MinGW-W64 installation process 4 .. 11

Figure 2-13. MinGW-W64 installation process 5 ... 12

Figure 2-14. MinGW-W64 installation process 6 ... 12

Figure 2-15. Test whether MinGW-W64 is installed successfully 1 .. 13

Figure 2-16. Copy MinGW-W64 bin folder path ... 13

Figure 2-17. Add MinGW-W64 environment variable 1 .. 14

Figure 2-18. Add MinGW-W64 environment variable 2 .. 14

Figure 2-19. Add MinGW-W64 environment variable 3 .. 15

Figure 2-20. Test whether MinGW-W64 is installed successfully 2 .. 16

Figure 2-21. Modify MinGW-W64 mingw32-make command to make command 16

Figure 2-22. Cmake installation process 1 .. 16

Figure 2-23. Cmake installation process 2 .. 17

Figure 2-24. Cmake installation process 3 .. 17

Figure 2-25. Test whether Cmake is installed successfully .. 17

Figure 2-26. Vscode choose to download and install .. 18

Figure 2-27. Vscode installation process 1 ... 18

Figure 2-28. Vscode installation process 2 ... 19

Figure 2-29. Vscode installation process 3 ... 19

Figure 2-30. Vscode installation process 4 ... 19

Figure 2-31. Vscode plugin installation search interface .. 20

Figure 3-1. File organization chart ... 21

Figure 4-1. Running tasks in Vscode ... 28

Figure 4-2. The build process of Cmake to generate makefile .. 28

Figure 4-3. Build process of makefile to generate executable file .. 28

Figure 4-4. File organization structure in the build directory .. 29

Figure 4-5. One-click compilation and download process .. 30

Figure 4-6. Vscode Debug interface ... 30

Figure 4-7. Add a breakpoint in the debugging interface and run .. 31

Figure 4-8. View peripheral registers and variable values .. 31

AN016
Build GD32MCU development environment based on cmake tool

4

List of Tables

Table 3-1. CMakeLists.txt code in the root directory ... 22

Table 3-2. Cortex-M3.cmake code in the root directory .. 22

Table 3-3. CMakeLists.txt code in gd_libs .. 23

Table 3-4. CMakeLists.txt code in src .. 24

Table 4-1. tasks.json code .. 26

Table 4-2. launch.json code .. 27

Table 5-1. Revision history ... 33

AN016
Build GD32MCU development environment based on cmake tool

5

1. Introduction

In the process of project compilation, most of the make tools are used. The make tools include

GNU Make, qmake, MS nmake and Makeepp, etc. These make tools follow different

specifications, standards and formate when writing makefiles on different platforms.

Transplanting the project to a different platform for compilation during the development

process will cause compilation failure. Using the CMAKE tool to generate Makefile will

effectively solve the above problems. This application manual is based on the GD32F10x

SDK development kit, and the CMAKE tool is used to build the compilation environment

AN016
Build GD32MCU development environment based on cmake tool

6

2. Development environment constructione

The development environment is mainly introduced as follows:

■ Hardware development board: GD32F103C-EVAL-V1.0 development board

■ Cortex-M3: GD32F103C

■ Operating system: Win10-64 bit

■ Cross compilation tool chain: gcc-arm-none-eabi

■ C/C++ compiler: MinGW

■ Development environment: VSCODE+CMAKE

■ Debug download tool: OPENOCD

2.1. Install cross-compilation tool

GNU Tools for Arm Embedded Processors download and installation address:

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-

toolchain/gnu-rm/downloads.

There are multiple version of GUN Arm Embedded Toolchain is available for downloading on

the page. In this application manual, choose to download and install gcc-arm-none-eabi-10-

2020-q4-major-win32.exe, as shown in Figure 2-1. Select download of GUN Arm

Embedded Toolchain.

Figure 2-1. Select download of GUN Arm Embedded Toolchain

After the download is complete, double-click to install and select “OK”.

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads

AN016
Build GD32MCU development environment based on cmake tool

7

Figure 2-2. GUN Arm Embedded Toolchain installation process 1

Click “Next”.

Figure 2-3. GUN Arm Embedded Toolchain installation process 2

Click “I accept”, select the installation path, select the default path and click install.

AN016
Build GD32MCU development environment based on cmake tool

8

Figure 2-4. GUN Arm Embedded Toolchain installation process 3

Figure 2-5. GUN Arm Embedded Toolchain installation process 4

When the installation is complete, select the add path to environment variable option and click

“Finish”.

AN016
Build GD32MCU development environment based on cmake tool

9

Figure 2-6. GUN Arm Embedded Toolchain installation process 5

Check whether the installation is successful, enter cmd in the operation, click “OK”, enter

“arm-none-eabi-gcc –v” in the command line, and the return result as shown in Figure 2-7.

Test whether the GUN Arm Embedded Toolchain is installed successfully indicates that

the installation is successful.

Figure 2-7. Test whether the GUN Arm Embedded Toolchain is installed successfully

2.2. Install C/C++ MinGW compiler

MinGW installation package download address: https://sourceforge.net/projects/mingw-

w64/files/mingw-w64/mingw-w64-release/.

There are two installation methods, online installation and offline installation, this manual

chooses online installation. Download MinGW-W64-install.exe.

https://sourceforge.net/projects/mingw-w64/files/mingw-w64/mingw-w64-release/
https://sourceforge.net/projects/mingw-w64/files/mingw-w64/mingw-w64-release/

AN016
Build GD32MCU development environment based on cmake tool

10

Figure 2-8. MinGW-W64 choose to download and install

After the download is complete, double-click to install. Select “Next”.

Figure 2-9. MinGW-W64 installation process 1

The configuration options are as follows, click “Next”.

AN016
Build GD32MCU development environment based on cmake tool

11

Figure 2-10. MinGW-W64 installation process 2

Select the installation path, select the default path.

Figure 2-11. MinGW-W64 installation process 3

Wait for the file download process.

Figure 2-12. MinGW-W64 installation process 4

AN016
Build GD32MCU development environment based on cmake tool

12

Click “Next”.

Figure 2-13. MinGW-W64 installation process 5

Click “Finish” to complete the installation.

Figure 2-14. MinGW-W64 installation process 6

AN016
Build GD32MCU development environment based on cmake tool

13

Enter “gcc –v” in the cmd command line to output non-runnable programs. The solution to

this problem is to manually add the downloaded file to the system environment variable.

Figure 2-15. Test whether MinGW-W64 is installed successfully 1

Open the MinGW installation path, copy the path in the /bin folder, and add the path to the

system environment variables.

Figure 2-16. Copy MinGW-W64 bin folder path

AN016
Build GD32MCU development environment based on cmake tool

14

Right-click “this computer” and select properties, click “advanced” to select environment

variables.

Figure 2-17. Add MinGW-W64 environment variable 1

Select the system variable and click Path.

Figure 2-18. Add MinGW-W64 environment variable 2

AN016
Build GD32MCU development environment based on cmake tool

15

Click “New”, paste the copied path, and click “OK”.

Figure 2-19. Add MinGW-W64 environment variable 3

Enter “gcc –v” in cmd and output the gcc -v version number. The installation is successful.

AN016
Build GD32MCU development environment based on cmake tool

16

Figure 2-20. Test whether MinGW-W64 is installed successfully 2

Copy the mingw32-make.exe file under the MinGW installation path/bin folder and rename it

as make. Use this command to directly enter “make” to achieve.

Figure 2-21. Modify MinGW-W64 mingw32-make command to make command

2.3. Install Cmake tool

Cmake tool download and installation address: https://cmake.org/download/

In this application manual, download and install version 3.20.1, and the installation process

is as follows.

After the download is complete, double-click to install. Select “Next”.

Figure 2-22. Cmake installation process 1

AN016
Build GD32MCU development environment based on cmake tool

17

Select "Add Cmake to system PATH for all users", click “Next”, select the default path, and

click “Next”.

Figure 2-23. Cmake installation process 2

Click “Install”, wait for the installation to complete, and click Finish to complete the installation.

Figure 2-24. Cmake installation process 3

Check whether the installation is successful, enter cmd in the run, click OK, enter cmake --

version in the command line, the return result as shown in Figure 2-25. Test whether Cmake

is installed successfully represents the successful installation.

Figure 2-25. Test whether Cmake is installed successfully

AN016
Build GD32MCU development environment based on cmake tool

18

2.4. Install Vscode and plug-ins

Vscode download and installation address: https://code.visualstudio.com/

In this application manual, download and install version 1.53.0, the download and installation

process is as follows.

Figure 2-26. Vscode choose to download and install

After the download is complete, double-click to install. Select “Next”, select the installation

path, and click “Next”.

Figure 2-27. Vscode installation process 1

AN016
Build GD32MCU development environment based on cmake tool

19

Keep clicking “Next” to complete the installation.

Figure 2-28. Vscode installation process 2

Figure 2-29. Vscode installation process 3

Figure 2-30. Vscode installation process 4

AN016
Build GD32MCU development environment based on cmake tool

20

In order to meet the development requirements, some plugins should also be installed, open

the installer Vscode, select the plug-in center on the left, search for and install the following

plug-ins respectively, and click to install. The installation plug-ins and version numbers are as

follows:

■C/C++: V1.2.2

■Cortex-Debug: V0.3.12

■Chinese (simplified) Language for visual studio: V1.52.2

Figure 2-31. Vscode plugin installation search interface

2.5. Install Openocd

Download link of Openocd that supports GD32MCU:https://github.com/GigaDevice-

Semiconductor/openocd.

After the user completes the compilation of Openocd according to the requirements, the

executable file openocd.exe is generated, and the file is added to the environment variable.

For the method of adding the environment variable, please refer to Install C/C++ MinGW

compiler.

AN016
Build GD32MCU development environment based on cmake tool

21

3. CmakeLists file writing

The file organization structure of this application manual is shown in Figure 3-1. File

organization chart, and the contents of each folder are introduced below:

Figure 3-1. File organization chart

In the build folder, the intermediate files, library files and final executable files generated

during the compilation process are stored;

In the gd_libs folder, store GD library files, mainly including peripheral library files, startup files

and some header files;

In the inc folder, store the header files of the code written by the user and the header files

related to the development board;

In the ldscripts folder, store the link script file;

In the src folder, the .c files written by the user and the .c files related to the development

board are stored.

Among them, the CMakeLists.txt file is included in the root directory, gd_libs and src folders,

AN016
Build GD32MCU development environment based on cmake tool

22

and the Cortex-M3.cmake file is included in the root directory. The content of CmakeLists.txt

in each file is introduced below.

3.1. CMakeLists.txt and Cortex-M3.cmake files in the root

directory

The content of the CMakeLists.txt file in the root directory is shown in Table 3-1.

CMakeLists.txt code in the root directory.

Table 3-1. CMakeLists.txt code in the root directory

set the minimum supported version of CMake

cmake_minimum_required(VERSION 3.17)

SET(PRJ_NAME "GD32F10x")

define project name

project(${PRJ_NAME})

#include Cortex-M3.cmake

include(Cortex-M3.cmake)

add directories gd_libs and src

add_subdirectory(gd_libs)

add_subdirectory(src)

The content of the Cortex-M3.cmake file is shown in Table 3-2. Cortex-M3.cmake code in

the root directory. Users can modify the compilation options and add related macro

definitions by modifying the parameters in the file.

Table 3-2. Cortex-M3.cmake code in the root directory

set the minimum supported version of CMake

cmake_minimum_required(VERSION 3.17)

#Cmake cross compilation configuration

SET(CMAKE_SYSTEM_NAME Generic)

#setup supportASM

ENABLE_LANGUAGE(ASM)

#debug mode

SET(CMAKE_BUILD_TYPE "Debug")

#release mode

#SET(CMAKE_BUILD_TYPE "Release")

set up C compilation tools

SET(CMAKE_C_COMPILER arm-none-eabi-gcc)

ELF to bin and hex file tool

SET(CMAKE_OBJCOPY arm-none-eabi-objcopy)

file size tool

SET(CMAKE_SIZE arm-none-eabi-size)

set floating point options

AN016
Build GD32MCU development environment based on cmake tool

23

SET(MCU_FLAGS "-mcpu=cortex-m3 -mfloat-abi=softfp -mfpu=fpv4-sp-d16")

set warning related information

SET(CMAKE_C_FLAGS "${MCU_FLAGS} -w -Wno-unknown-pragmas")

set debugging options

SET(CMAKE_C_FLAGS_DEBUG "-O0 -g2 -ggdb")

SET(CMAKE_C_FLAGS_RELEASE "-O3")

add macro definition

ADD_DEFINITIONS(

 -DGD32F10X_HD

 -DUSE_STDPERIPH_DRIVER

)

3.2. CMakeLists.txt file in the gd_libs folder

The content of the CMakeLists.txt file in gd_libs is shown in Table 3-3. CMakeLists.txt code

in gd_libs. This file mainly generates of the gd32_lib library from the GD peripheral firmware

library file and CMSIS related files and startup files, and specifies the location of the generated

file.

Table 3-3. CMakeLists.txt code in gd_libs

set relevant path variables

SET(START_UP_DIR

${PROJECT_SOURCE_DIR}/gd_libs/GD32F10x/Firmware/CMSIS/gcc_startup)

SET(CORE_SUPPORT_DIR ${PROJECT_SOURCE_DIR}/gd_libs/GD32F10x/Firmware/CMSIS)

SET(PERIPHERALS_DIR ${PROJECT_SOURCE_DIR}/gd_libs/GD32F10x/Firmware/Peripherals)

add header file search path

include_directories(

 ${CORE_SUPPORT_DIR}

 ${PERIPHERALS_DIR}/inc

 ${PROJECT_SOURCE_DIR}/inc

)

set startup file variables

SET(START_UP_ASM startup_gd32f10x_md.S)

set the C properties of the startup file

set_property(SOURCE ${START_UP_DIR}/${START_UP_ASM} PROPERTY LANGUAGE C)

The GLOB option will generate a file list for all files matching the query expression, and store the list

in the STD_LIB, SRC_CORE defined by the variable

file(GLOB STD_LIB ${PERIPHERALS_DIR}/src/*.c)

file(GLOB SRC_CORE ${CORE_SUPPORT_DIR}/*.c)

generate library target gd32_lib

add_library(gd32_lib

 ${STD_LIB}

 ${SRC_CORE}

AN016
Build GD32MCU development environment based on cmake tool

24

 ${START_UP_DIR}/${START_UP_ASM}

)

set the name of the library output

set_target_properties(gd32_lib PROPERTIES OUTPUT_NAME "gd32_lib")

set the default output path of library files

SET(LIBRARY_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/build/lib)

3.3. CMakeLists.txt file in the src folder

The content of the CMakeLists.txt file in the src folder is shown in Table 3-4. CMakeLists.txt

code in src. This file mainly realizes linking and compiling the .c file and gd32_lib library file

written by the user to generate an executable file and specify the location of the generated

executable file.

Table 3-4. CMakeLists.txt code in src

all .c files in this path are defined as SRC_LIST

aux_source_directory(. SRC_LIST)

add header file search path

include_directories(

 ${PROJECT_SOURCE_DIR}/gd_libs/GD32F10x/Firmware/CMSIS

 ${PROJECT_SOURCE_DIR}/gd_libs/GD32F10x/Firmware/Peripherals/inc

 ${PROJECT_SOURCE_DIR}/inc

)

add non-standard shared library search path

link_directories(${PROJECT_SOURCE_DIR}/build/lib)

set the relative path and variables of the linked file

SET(FLASH_LD_DIR ${PROJECT_SOURCE_DIR}/ldscripts)

SET(FLASH_LD_FILE gd32f10x_flash.ld)

SET(LINKER_SCRIPT ${FLASH_LD_DIR}/${FLASH_LD_FILE})

set link options

SET(CMAKE_EXE_LINKER_FLAGS

"--specs=nano.specs -specs=nosys.specs -T${LINKER_SCRIPT} -Wl,-

Map=${PROJECT_BINARY_DIR}/${PRJ_NAME}.map,--cref -Wl,--gc-sections")

generate object file

add_executable(${PRJ_NAME}.elf ${SRC_LIST})

link the object file with the library file

target_link_libraries(${PRJ_NAME}.elf gd32_lib)

set executable file output path

set(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/build/bin)

set ELF conversion path

SET(ELF_FILE ${PROJECT_SOURCE_DIR}/build/bin/${PRJ_NAME}.elf)

SET(HEX_FILE ${PROJECT_SOURCE_DIR}/build/bin/${PRJ_NAME}.hex)

SET(BIN_FILE ${PROJECT_SOURCE_DIR}/build/bin/${PRJ_NAME}.bin)

AN016
Build GD32MCU development environment based on cmake tool

25

add custom commands to realize ELF conversion of hex and bin files

add_custom_command(TARGET "${PRJ_NAME}.elf" POST_BUILD

 COMMAND ${CMAKE_OBJCOPY} -Obinary ${ELF_FILE} ${BIN_FILE}

 COMMAND ${CMAKE_OBJCOPY} -Oihex ${ELF_FILE} ${HEX_FILE}

 COMMENT "Building ${PRJ_NAME}.bin and ${PRJ_NAME}.hex"

 COMMAND ${CMAKE_COMMAND} -E copy ${HEX_FILE}

"${CMAKE_CURRENT_BINARY_DIR}/${PRJ_NAME}.hex"

 COMMAND ${CMAKE_COMMAND} -E copy ${BIN_FILE}

"${CMAKE_CURRENT_BINARY_DIR}/${PRJ_NAME}.bin"

 COMMAND ${CMAKE_SIZE} --format=berkeley ${ELF_FILE} ${HEX_FILE}

 COMMENT "Invoking: Cross ARM GNU Print Size"

)

AN016
Build GD32MCU development environment based on cmake tool

26

4. Compile, download and debug

4.1. Compile and download

Use vscode to open the project directory, a .vscode folder will be generated in the directory,

and create tasks.json file launch.json files in the folder. The tasks.json file mainly realizes

compilation and download function through buttons instead of command lines. The

launch.json file is mainly debugging configuration file. The specific file content and comments

of the two files are shown in Table 4-1. tasks.json code and Table 4-2. launch.json code.

Table 4-1. tasks.json code

{

"version": "2.0.0",

// specify the path where the command is executed

 "options": {

 "cwd": "${workspaceRoot}/build"

 }

 "tasks": [

 {

 // execute cmake command to generate makefile

 "type": "shell",

 "label": "cmake",

 "command": "cmake",

 "args": [

 "-G",

 "MinGW Makefiles",

 ".."

]

 },

 {

 // execute the make command to generate an executable file

 "label": "make",

 "type": "shell",

 "command": "make",

 "args": [],

 "group": {

 "kind": "build",

 "isDefault": true

 },

 "dependsOn": [

 "cmake"

],

AN016
Build GD32MCU development environment based on cmake tool

27

 "problemMatcher": []

 },

 {

 // execute the openocd command to download the executable file to the target MCU

 "type": "shell",

 "label": "Build & Updatde",

 "command": "openocd",

 "args": [

 "-f",

 //absolute path of configuration file

 "E:/Work_Code/10.cmake/Cmake/Code/Example-

windows/gd32f103C_example/openocd_gdlink_gd32f10x.cfg",

 "-c",

 // the absolute path of the compiled executable file

 "program E:/Work_Code/10.cmake/Cmake/Code/Example-

windows/gd32f103C_example/build/bin/GD32F10x.elf verify reset exit"

],

 "group": "build",

 "dependsOn": "make"

 }

]

}

Table 4-2. launch.json code

{

 // Use IntelliSense to learn about possible attributes.

 // Hover to view descriptions of existing attributes.

 // For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387

 "version": "0.2.0",

 "configurations": [

 {

 // Specify the path where the command is executed

 "cwd": "${workspaceRoot}",

 // Path to executable file

 "executable": "build/bin/GD32F10x.elf",

 "name": "Debug Microcontroller",

 "request": "launch",

 "type": "cortex-debug",

 // the path where the svd file is located

 "svdFile": "./GD32F10x_MD.svd",

 // openocd command

 "servertype": "openocd",

 // the relative path where the openocd configuration file is located

AN016
Build GD32MCU development environment based on cmake tool

28

 "configFiles": [

"./openocd_gdlink_gd32f10x.cfg ",

]

 }

]

}

Click "Terminal -> Run Task" in VScode, you can see the following options

Figure 4-1. Running tasks in Vscode

Select the cmake option, execute the cmake command and generate the makefile file. Vscode

terminal will prints makefile build process information.

Figure 4-2. The build process of Cmake to generate makefile

Select the make option, execute the make command, realize the compilation function, and

generate executable files .elf, .bin and .hex files. The vscode terminal will print the executable

file generation process information. At the same time, it can be seen from the build directory

that the generated elf, hex and bin files are stored in the bin directory.

Figure 4-3. Build process of makefile to generate executable file

AN016
Build GD32MCU development environment based on cmake tool

29

Figure 4-4. File organization structure in the build directory

The option Build&Updata realizes one-click cmake build, compile and openocd download

functions. The vscode terminal will print information about the build, compile and program

AN016
Build GD32MCU development environment based on cmake tool

30

download process.

Figure 4-5. One-click compilation and download process

4.2. Debug

Click "Run -> Start Debugging" in VScode to enter the debugging interface as shown in

Figure 4-6. Vscode Debug interface. Run, single step, reset and terminate the program

debugging in the upper right corner of the interface.

Figure 4-6. Vscode Debug interface

AN016
Build GD32MCU development environment based on cmake tool

31

Add a breakpoint on the left side of the code, and execute Run to run to the breakpoint.

Figure 4-7. Add a breakpoint in the debugging interface and run

View the peripheral register value on the left boundary surface, and add variables to view and

other debugging operations.

Figure 4-8. View peripheral registers and variable values

AN016
Build GD32MCU development environment based on cmake tool

32

AN016
Build GD32MCU development environment based on cmake tool

33

5. Revision history

Table 5-1. Revision history

Revision No Description Date

1.0 Initial Release June.30, 2021

AN016
Build GD32MCU development environment based on cmake tool

34

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any

product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and

treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and

treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and

brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability

arising out of the application or use of any Product described in this document. Any information provided in this document is provided

only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality

and safety of any application made of this information and any resulting product. Except for customized products which has been

expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business,

industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components

in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control

instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments,

life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution

control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury,

death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling

the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers

shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising

from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it’s suppliers

and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or

death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes,

corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2021 GigaDevice – All rights reserved

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Development environment constructione
	2.1. Install cross-compilation tool
	2.2. Install C/C++ MinGW compiler
	2.3. Install Cmake tool
	2.4. Install Vscode and plug-ins
	2.5. Install Openocd

	3. CmakeLists file writing
	3.1. CMakeLists.txt and Cortex-M3.cmake files in the root directory
	3.2. CMakeLists.txt file in the gd_libs folder
	3.3. CMakeLists.txt file in the src folder

	4. Compile, download and debug
	4.1. Compile and download
	4.2. Debug

	5. Revision history

