

GigaDevice Semiconductor Inc.

Arm® Cortex®- M3/M4/M23/M33 32-bit MCU

Application Note

AN018

AN018
 Instruction for use of MPU

2

Table of Contents

Table of Contents ... 2

List of Figures .. 3

List of Tables .. 4

1. Introduction .. 5

2. Application of MPU .. 6

2.1. Development Environment ... 6

2.2. Development Goal ... 6

2.3. Code Interpretation .. 6

3. Privileged Mode and Unprivileged Mode Switching ... 11

3.1. Development Environment ... 11

3.2. Introduction of Privileged Mode and Unprivileged Mode Switching 11

3.3. Development Goal ... 12

3.4. Code Interpretation .. 12

4. Revision history ... 16

AN018
 Instruction for use of MPU

3

List of Figures

Figure 2-1. Flowchart of MPU ... 7

Figure 3-1. Privilege Mode and Unprivileged Mode Switching ... 12

AN018
 Instruction for use of MPU

4

List of Tables

Table 2-1. Code of main program ... 7

Table 2-2. Code of mpu_setup() function .. 8

Table 2-3. Code of mpu_access_permission() function .. 10

Table 3-1. Code of main program ... 13

Table 4-1. Revision history ... 16

AN018
 Instruction for use of MPU

5

1. Introduction

Memory Protection Unit(MPU) is an optional unit in Cortex-M3/M4 controller. It can protect

memory and make software system more robust and reliable. If you want to learn more about

MPU, you can read Chapter 14 of the Cortex-M3 Authoritative Guide in Chinese or Chapter

11 of the Cortex-M4 Authoritative Guide in English. This application note, based on the

GD32F4xx series, describes how to set up MPU according to the application and how to

switch between privileged mode and unprivileged mode.

AN018
 Instruction for use of MPU

6

2. Application of MPU

2.1. Development Environment

Evaluation Board：GD32450Z-EVAL

Development tool：GD32F4xx_MPU_example

 Keil/IAR

2.2. Development Goal

Define an array named PrivilegedReadOnlyArray in the software, and define the region

attribute that the array belongs to as read-only in privilege mode. Verify that a write operation

on the region will cause memory management exception.

2.3. Code Interpretation

MPU programming can be divided into four steps：

(a) Check whether the core supports MPU through MPU type register；

(b) Disable MPU；

(c) Configure the size and attributes of each region according to the application requirement；

(d) Enable MPU。

The flowchart is show in Figure 2.1.

AN018
 Instruction for use of MPU

7

Figure 2-1. Flowchart of MPU

The core
supports MPU?

Start

Disable MPU

End

Configure region

Enable MPU

yes

no

In the main program, configure systick first, then initialize LED1 and LED2, and then

determine whether the core supports MPU. If the core does not support, the program enters

an infinite loop. Otherwise, configure MPU. Finally, let the LED1 toggle every second. The

main program code is show in Table 2-1. Code of main program.

Table 2-1. Code of main program

int main(void)

{

 systick_config();

 gd_eval_led_init(LED1);

 gd_eval_led_init(LED2);

 gd_eval_led_off(LED2);

 /* if the core dose not support MPU, go to infinite loop */

 if(FALSE == mpu_test()){

AN018
 Instruction for use of MPU

8

 while(1);

 }

 mpu_setup();

 mpu_access_permission_config();

 while(1){

 /* toggle led1 */

 gd_eval_led_toggle(LED1);

 delay_1ms(1000);

 }

}

The properties of RAM、FLASH and the region to which the peripheral belongs are configured

in the mpu_setup() function. The properties of the region to which the

arrayPrivilegedReadOnlyArray belongs are configured in the

mpu_access_permission_config() function. The following is an introduction of mpu_setup()

function and mpu_access_permission_config() function.

In the mpu_setup() function, the program first disables the MPU, and then sets the properties

for the region in which RAM is located. Set RAM as region 0, starting address is 0x20000000,

size is 8KB, readable and writable in privilege mode and unprivileged mode. It can not be

shared, not cached, not buffered, and allowed to fetch. Next, set the properties of the region

in which FLASH is located. Set FLASH as region 1, starting address is 0x08000000, size is

1MB, readable and writable in privilege mode and unprivileged mode. It can not be shared,

not cached, not buffered, and allowed to fetch. Finally, set the properties of the region in which

peripheral is located. Set peripheral as region 2, starting address is 0x40000000, size is

512MB, readable and writable in privilege mode and unprivileged mode. It can not be shared,

not cached, not buffered, and not allowed to fetch. After setting up, enable MPU. The code of

the mpu_setup() function is shown in Table 2-2. Code of mpu_setup() function.

Table 2-2. Code of mpu_setup() function

void mpu_setup(void)

{

 mpu_region_init_struct mpu_init_struct;

 /* disable MPU */

 mpu_disable();

 /* configure RAM region as region 0, 8kB of size and R/W region */

 mpu_init_struct.enable = MPU_REGION_ENABLE;

 mpu_init_struct.base_address = RAM_BASE_ADDRESS;

 mpu_init_struct.region_size = RAM_SIZE;

mpu_init_struct.access_permission=MPU_REGION_PRIV_READ_WRITE_USER_READ_WRI

TE;

 mpu_init_struct.bufferable = MPU_ACCESS_NOT_BUFFERABLE;

AN018
 Instruction for use of MPU

9

 mpu_init_struct.cacheable = MPU_ACCESS_NOT_CACHEABLE;

 mpu_init_struct.shareable = MPU_ACCESS_NOT_SHAREABLE;

 mpu_init_struct.number = MPU_REGION_NUMBER_0;

 mpu_init_struct.type_extension_field = MPU_TEX_LEVEL_0;

 mpu_init_struct.sub_region_disable = MPU_SUB_REGION_ALL_DISABLE;

 mpu_init_struct.instruction_accessable = MPU_INSTRUCTION_ACCESS_ENABLE;

 mpu_region_config(&mpu_init_struct);

 /* configure FLASH region as region 1, 1MB of size and R/W region */

 mpu_init_struct.base_address = FLASH_BASE_ADDRESS;

 mpu_init_struct.region_size = FLASH_SIZE;

 mpu_init_struct.number = MPU_REGION_NUMBER_1;

 mpu_region_config(&mpu_init_struct);

 /* configure peripheral region as region 2, 512MB of size, R/W and execute never region */

 mpu_init_struct.base_address = PERIPH_BASE_ADDRESS;

 mpu_init_struct.region_size = PERIPH_SIZE;

 mpu_init_struct.number = MPU_REGION_NUMBER_2;

 mpu_init_struct.instruction_accessable = MPU_INSTRUCTION_ACCESS_DISABLE;

 mpu_region_config(&mpu_init_struct);

 /* enable MPU */

 mpu_enable(MPU_HFNMI_DISABLE_PRIVDEF_ENABLE);

}

In the mpu_access_permission_config() function, the program first disables the MPU, and

then configures the properties of the region where the array PrivilegedReadOnlyArray is

located. Set the array as region 3, starting address is 0x20002000, size is 32Byte, only can

read in privileged mode. It can not be shared, not cached, not buffered, and allowed to fetch.

After setting up, enable MPU. Because it is set to be readable only in privilege mode, after

execute read_data = PrivilegedReadOnlyArray[0]; the program will not enter

MemManage_Handler. However, if execute write operation PrivilegedReadOnlyArray[0] = 'a';

the program goes into MemManage_Handler and lights up the LED2. The code of the

mpu_access_permission() function is shown in Table 2-3. Code of

mpu_access_permission() function.

AN018
 Instruction for use of MPU

10

Table 2-3. Code of mpu_access_permission() function

void mpu_access_permission_config(void)

{

 mpu_region_init_struct mpu_struct;

 /* disable MPU */

 mpu_disable();

 /* configure region for privileged read only array as region 3, 32 byte and read only in privileged

mode */

 mpu_struct.enable = MPU_REGION_ENABLE;

 mpu_struct.base_address = ARRAY_BASE_ADDRESS;

 mpu_struct.region_size = ARRAY_SIZE;

 mpu_struct.access_permission=MPU_REGION_PRIV_READ_ONLY_USER_DISABLE;

 mpu_struct.bufferable = MPU_ACCESS_NOT_BUFFERABLE;

 mpu_struct.cacheable = MPU_ACCESS_NOT_CACHEABLE;

 mpu_struct.shareable = MPU_ACCESS_NOT_SHAREABLE;

 mpu_struct.number = MPU_REGION_NUMBER_3;

 mpu_struct.type_extension_field = MPU_TEX_LEVEL_0;

 mpu_struct.sub_region_disable = MPU_SUB_REGION_ALL_DISABLE;

 mpu_struct.instruction_accessable = MPU_INSTRUCTION_ACCESS_ENABLE;

 mpu_region_config(&mpu_struct);

 /* enable MPU */

 mpu_enable(MPU_HFNMI_DISABLE_PRIVDEF_ENABLE);

 /* read from privileged read only array. This will not generate error */

 read_data = PrivilegedReadOnlyArray[0];

 /* uncomment the following line to write to privileged read only array. This will generate error */

// PrivilegedReadOnlyArray[0] = 'a';

}

AN018
 Instruction for use of MPU

11

3. Privileged Mode and Unprivileged Mode Switching

3.1. Development Environment

Evaluation Board：GD32450Z-EVAL

Development tool：GD32F4xx_privilege_mode_unprivilege_mode_switch

 Keil

3.2. Introduction of Privileged Mode and Unprivileged Mode

Switching

Privileged Mode and Unprivileged Mode are two modes supported by Cortex-M3/M4 and can

be configured by bit 0 of the control register. In privileged mode, you can enter unprivileged

mode by setting CONTROL[0]. Code in unprivileged mode can no longer attempt to modify

CONTROL[0] to return to privileged mode, it must pass an exception handing operation, such

as SVC(Supervisor Calls). Modifying CONTROL[0] in exception handling can return to

privileged mode from unprivileged mode. The handover of privileged mode and unprivileged

mode is shown in figure 3.1. In different modes, code has different access rights. When code

runs in privileged mode, it has all access permissions. However, in unprivileged mode, its

access permissions are limited.

Privileged mode and unprivileged mode are not part of MPU, but are associated with MPU.

Memory access rules can be set through MPU. These rules including whether the memory

space is readable and writable in the privileged mode. Therefore, setting the read-write

property of the memory by MPU and operate the memory, user can understand the switch of

privileged mode and unprivileged mode better.

AN018
 Instruction for use of MPU

12

Figure 3-1. Privilege Mode and Unprivileged Mode Switching

Unprivileged

Mode

Exception

Handling

Privileged

Mode
Operate Control register

Operate Control register

3.3. Development Goal

User can understand privileged mode and unprivileged mode switching better by learning this

example.

3.4. Code Interpretation

In the main program, configure systick and initialize LED1 and LED2 first. Then determine

whether the core supports MPU. Next, switch the stack pointer from main stack pointer to

process stack pointer. And then configure the MPU. In the mpu_access_permission_config()

function, the attributes of the region to which the array PrivilegedReadOnlyArray belongs are

defined as readable and writable in privileged mode. Switching thread mode from privileged

mode to unprivileged mode, if write to the array now, the code will trigger memory

management exception and lights up LED2. It is impossible to switch back to privileged mode

by modify the control register directly. It can only be done in the exception. The program enters

the SVC exception and switches back to privileged mode. Write to the array will not trigger

memory management exception now and the main program enter the while loop to toggle

LED1 every second. The main program code is shown in table 3-1.

AN018
 Instruction for use of MPU

13

Table 3-1. Code of main program

int main(void)

{

 systick_config();

 gd_eval_led_init(LED1);

 gd_eval_led_init(LED2);

 gd_eval_led_off(LED2);

 /*if the core dose not support MPU, go to infinite loop */

 if(FALSE == mpu_test()){

 while(1);

 }

 /* switch thread mode stack from main to process */

 /* initialize memory reserved for process stack */

 for(Index = 0; Index < SP_PROCESS_SIZE; Index++)

 {

 PSPMemAlloc[Index] = 0x00;

 }

 /* set process stack value */

 __set_PSP((uint32_t)PSPMemAlloc + SP_PROCESS_SIZE);

 /* select process stack as thread mode stack */

 __set_CONTROL(SP_PROCESS);

 /* execute ISB instruction to flush pipeline as recommended by arm */

 __ISB();

 /* get the thread mode stack used */

 if((__get_CONTROL() & 0x02) == SP_MAIN){

 /* main stack is used as the current stack */

 CurrentStack = SP_MAIN;

 }else{

 /* process stack is used as the current stack */

 CurrentStack = SP_PROCESS;

 /* get process stack pointer value */

 PSPValue = __get_PSP();

 }

 mpu_setup();

 mpu_access_permission_config();

AN018
 Instruction for use of MPU

14

 /* switch thread mode from privileged to unprivileged */

 /* thread mode has unprivileged access */

 __set_CONTROL(THREAD_MODE_UNPRIVILEGED | SP_PROCESS);

 /* execute ISB instruction to flush pipeline as recommended by arm */

 __ISB();

 /* unprivileged access mainly affect ability to:

 - use or not use certain instructions such as MSR fields

 - access System Control Space (SCS) registers such as NVIC and SysTick */

 /* check thread mode privilege status */

 if((__get_CONTROL() & 0x01) == THREAD_MODE_PRIVILEGED){

 /* thread mode has privileged access */

 ThreadMode = THREAD_MODE_PRIVILEGED;

 }else{

 /* thread mode has unprivileged access */

 ThreadMode = THREAD_MODE_UNPRIVILEGED;

 }

 /* the thread mode is unprivileged now. It will cause MemManage fault if uncomment the following

four lines.*/

// if(PrivilegedReadOnlyArray[0])

// {

// PrivilegedReadOnlyArray[0] = 'e';

// }

 /* switch back thread mode from unprivileged to privileged */

 /* try to switch back thread mode to privileged (Not possible, this can be

 done only in Handler mode) */

 __set_CONTROL(THREAD_MODE_PRIVILEGED | SP_PROCESS);

 /* execute ISB instruction to flush pipeline as recommended by arm */

 __ISB();

 /* generate a system call exception, and in the ISR switch back thread mode to privileged */

 __SVC();

 /* check Thread mode privilege status */

 if((__get_CONTROL() & 0x01) == THREAD_MODE_PRIVILEGED)

 {

 /* Thread mode has privileged access */

 ThreadMode = THREAD_MODE_PRIVILEGED;

AN018
 Instruction for use of MPU

15

 }else{

 /* Thread mode has unprivileged access */

 ThreadMode = THREAD_MODE_UNPRIVILEGED;

 }

 /* the thread mode is privileged now ,write to PrivilegedReadOnlyArray[0] will not cause

MemManage fault */

 if(PrivilegedReadOnlyArray[0])

 {

 PrivilegedReadOnlyArray[0] = 'e';

 }

 while(1){

 /* toggle led1*/

 gd_eval_led_toggle(LED1);

 delay_1ms(1000);

 }

}

AN018
 Instruction for use of MPU

16

4. Revision history

Table 4-1. Revision history

Revision No. Description Date

1.0 Initial Release Nov.30 2021

AN018
 Instruction for use of MPU

17

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any

product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and

treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and

treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and

brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability

arising out of the application or use of any Product described in this document. Any information provided in this document is provided

only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality

and safety of any application made of this information and any resulting product. Except for customized products which has been

expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business,

industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components

in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control

instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments,

life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution

control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury,

death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling

the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers

shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising

from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it’s suppliers

and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or

death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes,

corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2021 GigaDevice – All rights reserved

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Application of MPU
	2.1. Development Environment
	2.2. Development Goal
	2.3. Code Interpretation

	3. Privileged Mode and Unprivileged Mode Switching
	3.1. Development Environment
	3.2. Introduction of Privileged Mode and Unprivileged Mode Switching
	3.3. Development Goal
	3.4. Code Interpretation

	4. Revision history

