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1. Introduction 

Memory Protection Unit(MPU) is an optional unit in Cortex-M3/M4 controller. It can protect 

memory and make software system more robust and reliable. If you want to learn more about 

MPU, you can read Chapter 14 of the Cortex-M3 Authoritative Guide in Chinese or Chapter 

11 of the Cortex-M4 Authoritative Guide in English. This application note, based on the 

GD32F4xx series, describes how to set up MPU according to the application and how to 

switch between privileged mode and unprivileged mode. 
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2. Application of MPU 

2.1. Development Environment 

Evaluation Board：GD32450Z-EVAL 

Development tool：GD32F4xx_MPU_example 

                  Keil/IAR 

2.2. Development Goal 

Define an array named PrivilegedReadOnlyArray in the software, and define the region 

attribute that the array belongs to as read-only in privilege mode. Verify that a write operation 

on the region will cause memory management exception. 

2.3. Code Interpretation 

MPU programming can be divided into four steps： 

(a) Check whether the core supports MPU through MPU type register； 

(b) Disable MPU； 

(c) Configure the size and attributes of each region according to the application requirement； 

(d) Enable MPU。 

The flowchart is show in Figure 2.1. 
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Figure 2-1. Flowchart of MPU 
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In the main program, configure systick first, then initialize LED1 and LED2, and then 

determine whether the core supports MPU. If the core does not support, the program enters 

an infinite loop. Otherwise, configure MPU. Finally, let the LED1 toggle every second. The 

main program code is show in Table 2-1. Code of main program.  

Table 2-1. Code of main program  

int main(void) 

{  

    systick_config(); 

    gd_eval_led_init(LED1); 

    gd_eval_led_init(LED2); 

    gd_eval_led_off(LED2); 

 

    /* if the core dose not support MPU, go to infinite loop */ 

    if(FALSE == mpu_test()){ 
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        while(1); 

    } 

     

    mpu_setup(); 

    mpu_access_permission_config(); 

    while(1){ 

        /* toggle led1 */ 

        gd_eval_led_toggle(LED1); 

        delay_1ms(1000); 

    } 

} 

The properties of RAM、FLASH and the region to which the peripheral belongs are configured 

in the mpu_setup() function. The properties of the region to which the 

arrayPrivilegedReadOnlyArray belongs are configured in the 

mpu_access_permission_config() function. The following is an introduction of mpu_setup() 

function and mpu_access_permission_config() function.  

In the mpu_setup() function, the program first disables the MPU, and then sets the properties 

for the region in which RAM is located. Set RAM as region 0, starting address  is 0x20000000, 

size is 8KB, readable and writable in privilege mode and unprivileged mode. It can not be 

shared, not cached, not buffered, and allowed to fetch. Next, set the properties of the region 

in which FLASH is located. Set FLASH as region 1, starting address is 0x08000000, size is 

1MB, readable and writable in privilege mode and unprivileged mode. It can not be shared, 

not cached, not buffered, and allowed to fetch. Finally, set the properties of the region in which 

peripheral is located. Set peripheral as region 2, starting address is 0x40000000, size is 

512MB, readable and writable in privilege mode and unprivileged mode. It can not be shared, 

not cached, not buffered, and not allowed to fetch. After setting up, enable MPU. The code of 

the mpu_setup() function is shown in Table 2-2. Code of mpu_setup() function.  

Table 2-2. Code of mpu_setup() function 

void mpu_setup(void) 

{ 

    mpu_region_init_struct mpu_init_struct; 

     

    /* disable MPU */ 

    mpu_disable(); 

 

    /* configure RAM region as region 0, 8kB of size and R/W region */ 

    mpu_init_struct.enable                    =  MPU_REGION_ENABLE; 

    mpu_init_struct.base_address              =  RAM_BASE_ADDRESS; 

    mpu_init_struct.region_size               =  RAM_SIZE; 

mpu_init_struct.access_permission=MPU_REGION_PRIV_READ_WRITE_USER_READ_WRI

TE; 

    mpu_init_struct.bufferable                =  MPU_ACCESS_NOT_BUFFERABLE; 
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    mpu_init_struct.cacheable                 =  MPU_ACCESS_NOT_CACHEABLE; 

    mpu_init_struct.shareable                 =  MPU_ACCESS_NOT_SHAREABLE; 

    mpu_init_struct.number                    =  MPU_REGION_NUMBER_0; 

    mpu_init_struct.type_extension_field      =  MPU_TEX_LEVEL_0; 

    mpu_init_struct.sub_region_disable        =  MPU_SUB_REGION_ALL_DISABLE; 

    mpu_init_struct.instruction_accessable =  MPU_INSTRUCTION_ACCESS_ENABLE; 

 

    mpu_region_config(&mpu_init_struct); 

 

    /* configure FLASH region as region 1, 1MB of size and R/W region */ 

    mpu_init_struct.base_address              =  FLASH_BASE_ADDRESS; 

    mpu_init_struct.region_size               =  FLASH_SIZE; 

    mpu_init_struct.number                    =  MPU_REGION_NUMBER_1; 

 

    mpu_region_config(&mpu_init_struct); 

 

    /* configure peripheral region as region 2, 512MB of size, R/W and execute never region */ 

    mpu_init_struct.base_address              =  PERIPH_BASE_ADDRESS; 

    mpu_init_struct.region_size               =  PERIPH_SIZE; 

    mpu_init_struct.number                    =  MPU_REGION_NUMBER_2; 

    mpu_init_struct.instruction_accessable =  MPU_INSTRUCTION_ACCESS_DISABLE; 

 

    mpu_region_config(&mpu_init_struct); 

 

    /* enable MPU */ 

    mpu_enable(MPU_HFNMI_DISABLE_PRIVDEF_ENABLE); 

 

} 

In the mpu_access_permission_config() function, the program first disables the MPU, and 

then configures the properties of the region where the array PrivilegedReadOnlyArray is 

located. Set the array as region 3, starting address is 0x20002000, size is 32Byte, only can 

read in privileged mode. It can not be shared, not cached, not buffered, and allowed to fetch. 

After setting up, enable MPU. Because it is set to be readable only in privilege mode, after 

execute read_data = PrivilegedReadOnlyArray[0]; the program will not enter 

MemManage_Handler. However, if execute write operation PrivilegedReadOnlyArray[0] = 'a'; 

the program goes into MemManage_Handler and lights up the LED2. The code of the 

mpu_access_permission() function is shown in Table 2-3. Code of 

mpu_access_permission() function.  



AN018 
                   Instruction for use of MPU 

10 

 

Table 2-3. Code of mpu_access_permission() function 

void mpu_access_permission_config(void) 

{ 

    mpu_region_init_struct mpu_struct; 

 

    /* disable MPU */ 

    mpu_disable(); 

 

    /* configure region for privileged read only array as region 3, 32 byte and read only in privileged 

mode */ 

    mpu_struct.enable                        =  MPU_REGION_ENABLE; 

    mpu_struct.base_address                  =  ARRAY_BASE_ADDRESS; 

    mpu_struct.region_size                   =  ARRAY_SIZE; 

    mpu_struct.access_permission=MPU_REGION_PRIV_READ_ONLY_USER_DISABLE; 

    mpu_struct.bufferable                    =  MPU_ACCESS_NOT_BUFFERABLE; 

    mpu_struct.cacheable                     =  MPU_ACCESS_NOT_CACHEABLE; 

    mpu_struct.shareable                     =  MPU_ACCESS_NOT_SHAREABLE; 

    mpu_struct.number                        =  MPU_REGION_NUMBER_3; 

    mpu_struct.type_extension_field          =  MPU_TEX_LEVEL_0; 

    mpu_struct.sub_region_disable            =  MPU_SUB_REGION_ALL_DISABLE; 

    mpu_struct.instruction_accessable     =  MPU_INSTRUCTION_ACCESS_ENABLE; 

     

    mpu_region_config(&mpu_struct); 

 

    /* enable MPU */ 

    mpu_enable(MPU_HFNMI_DISABLE_PRIVDEF_ENABLE); 

 

    /* read from privileged read only array. This will not generate error */ 

    read_data = PrivilegedReadOnlyArray[0]; 

 

    /* uncomment the following line to write to privileged read only array. This will generate error */ 

//    PrivilegedReadOnlyArray[0] = 'a';  

} 
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3. Privileged Mode and Unprivileged Mode Switching 

3.1. Development Environment 

Evaluation Board：GD32450Z-EVAL 

Development tool：GD32F4xx_privilege_mode_unprivilege_mode_switch 

                  Keil 

3.2. Introduction of Privileged Mode and Unprivileged Mode 

Switching 

Privileged Mode and Unprivileged Mode are two modes supported by Cortex-M3/M4 and can 

be configured by bit 0 of the control register. In privileged mode, you can enter unprivileged 

mode by setting CONTROL[0]. Code in unprivileged mode can no longer attempt to modify 

CONTROL[0] to return to privileged mode, it must pass an exception handing operation, such 

as SVC(Supervisor Calls). Modifying CONTROL[0] in exception handling can return to 

privileged mode from unprivileged mode. The handover of privileged mode and unprivileged 

mode is shown in figure 3.1. In different modes, code has different access rights. When code 

runs in privileged mode, it has all access permissions. However, in unprivileged mode, its 

access permissions are limited.  

Privileged mode and unprivileged mode are not part of MPU, but are associated with MPU. 

Memory access rules can be set through MPU. These rules including whether the memory 

space is readable and writable in the privileged mode. Therefore, setting the read-write 

property of the memory by MPU and operate the memory, user can understand the switch of 

privileged mode and unprivileged mode better.  
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Figure 3-1. Privilege Mode and Unprivileged Mode Switching 
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3.3. Development Goal 

User can understand privileged mode and unprivileged mode switching better by learning this 

example. 

3.4. Code Interpretation 

In the main program, configure systick and initialize LED1 and LED2 first. Then determine 

whether the core supports MPU. Next, switch the stack pointer from main stack pointer to 

process stack pointer. And then configure the MPU. In the mpu_access_permission_config() 

function, the attributes of the region to which the array PrivilegedReadOnlyArray belongs are 

defined as readable and writable in privileged mode. Switching thread mode from privileged 

mode to unprivileged mode, if write to the array now, the code will trigger memory 

management exception and lights up LED2. It is impossible to switch back to privileged mode 

by modify the control register directly. It can only be done in the exception. The program enters 

the SVC exception and switches back to privileged mode. Write to the array will not trigger 

memory management exception now and the main program enter the while loop to toggle 

LED1 every second. The main program code is shown in table 3-1. 
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Table 3-1. Code of main program  

int main(void) 

{  

    systick_config(); 

    gd_eval_led_init(LED1); 

    gd_eval_led_init(LED2); 

    gd_eval_led_off(LED2); 

 

    /*if the core dose not support MPU, go to infinite loop */ 

    if(FALSE == mpu_test()){ 

        while(1); 

    } 

    /* switch thread mode stack from main to process */ 

    /* initialize memory reserved for process stack */ 

    for(Index = 0; Index < SP_PROCESS_SIZE; Index++) 

    { 

      PSPMemAlloc[Index] = 0x00; 

    } 

   

    /* set process stack value */  

    __set_PSP((uint32_t)PSPMemAlloc + SP_PROCESS_SIZE); 

 

    /* select process stack as thread mode stack */ 

    __set_CONTROL(SP_PROCESS); 

   

    /* execute ISB instruction to flush pipeline as recommended by arm */ 

    __ISB(); 

   

    /* get the thread mode stack used */ 

    if((__get_CONTROL() & 0x02) == SP_MAIN){ 

        /* main stack is used as the current stack */ 

        CurrentStack = SP_MAIN; 

    }else{ 

        /* process stack is used as the current stack */ 

        CurrentStack = SP_PROCESS; 

 

        /* get process stack pointer value */ 

        PSPValue = __get_PSP(); 

    } 

 

    mpu_setup(); 

    mpu_access_permission_config(); 
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    /* switch thread mode from privileged to unprivileged */ 

    /* thread mode has unprivileged access */ 

    __set_CONTROL(THREAD_MODE_UNPRIVILEGED | SP_PROCESS); 

   

    /* execute ISB instruction to flush pipeline as recommended by arm */ 

    __ISB(); 

 

    /* unprivileged access mainly affect ability to: 

     - use or not use certain instructions such as MSR fields 

     - access System Control Space (SCS) registers such as NVIC and SysTick */ 

 

    /* check thread mode privilege status */ 

    if((__get_CONTROL() & 0x01) == THREAD_MODE_PRIVILEGED){ 

        /* thread mode has privileged access */ 

        ThreadMode = THREAD_MODE_PRIVILEGED; 

    }else{ 

        /* thread mode has unprivileged access */ 

        ThreadMode = THREAD_MODE_UNPRIVILEGED; 

    } 

 

    /* the thread mode is unprivileged now. It will cause MemManage fault if uncomment the following 

four lines.*/ 

//    if(PrivilegedReadOnlyArray[0]) 

//    { 

//        PrivilegedReadOnlyArray[0] = 'e'; 

//    } 

 

    /* switch back thread mode from unprivileged to privileged */  

    /* try to switch back thread mode to privileged (Not possible, this can be 

       done only in Handler mode) */ 

    __set_CONTROL(THREAD_MODE_PRIVILEGED | SP_PROCESS); 

   

    /* execute ISB instruction to flush pipeline as recommended by arm */ 

    __ISB(); 

   

    /* generate a system call exception, and in the ISR switch back thread mode to privileged */ 

    __SVC(); 

   

    /* check Thread mode privilege status */ 

    if((__get_CONTROL() & 0x01) == THREAD_MODE_PRIVILEGED) 

    { 

        /* Thread mode has privileged access */ 

        ThreadMode = THREAD_MODE_PRIVILEGED; 
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    }else{ 

        /* Thread mode has unprivileged access */ 

        ThreadMode = THREAD_MODE_UNPRIVILEGED; 

    } 

 

    /* the thread mode is privileged now ,write to PrivilegedReadOnlyArray[0] will not cause 

MemManage fault */ 

    if(PrivilegedReadOnlyArray[0]) 

    { 

        PrivilegedReadOnlyArray[0] = 'e'; 

    } 

 

    while(1){ 

        /* toggle led1*/ 

        gd_eval_led_toggle(LED1); 

        delay_1ms(1000); 

    } 

} 
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4. Revision history 

Table 4-1. Revision history 

Revision No. Description Date 

1.0 Initial Release Nov.30 2021 
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