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1. Introduction 

Lua is a powerful, efficient, lightweight, embeddable scripting language. It supports procedural 

programming, object-oriented programming, functional programming, data-driven 

programming, and data description. Lua combines simple procedural syntax with powerful 

data description constructs based on associative arrays and extensible semantics. Lua is 

dynamically typed, runs by interpreting bytecode with a register-based virtual machine, and 

has automatic memory management with incremental garbage collection, making it ideal for 

configuration, scripting, and rapid prototyping. Lua is implemented as a library by cleanC (a 

subset common between standard C and C++). As an extended language, Lua does not have 

the concept of a "main" program, it can only work in a host program, which is called an 

embedded program or host for short. The host program can call functions to execute a small 

pieces of Lua code, can read and write Lua variables, and can register C functions for Lua 

code to call. Relying on C functions, Lua can share the same grammatical framework to 

customize the programming language, which can be applied to different fields. The official 

release of Lua contains a sample host program called Lua, which is a complete and 

independent Lua interpreter implemented using the Lua library, which can be used for 

interactive applications or batch processing. 

Lua is an open source software language, and its use license determines its use without any 

guarantee. 

This article describes how to port Lua to the GD32 project. 
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2. Lua interpreter migration 

2.1. Lua download 

The Lua interpreter transplantation platform introduced in this article is the GD32F103E-EVAL 

board. The IDE platform ported by Lua interpreter is KEIL4. 

Lua source code can be downloaded from https://www.lua.org/. The currently tested Lua 

version is 5.4.2, as shown in the figure below. 

Figure 2-1. Lua download interface 

 

Figure 2-2. Lua historical version download interface 

 

 Unzip the compressed package to get the file to be transplanted 
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Figure 2-3. Lua file after decompression 

 

 Delete the lua.c and luac.c files under the decompressed lua-5.4.2\src file. 

2.2. Add Lua source code file 

The transplantation project introduced in this article is based on the 01_GPIO_Runnin

g_LED in GD32F10x Demo_Suite _V2.1.0 

 Copy the files after deleting lua.c and luac.c to the GD32F10x_Firmware_Library f

ile, as shown in Figure 2.4. 

Figure 2-4. Lua file add path 

 

 Open the project. Add all .c files in lua-5.4.2\src to the project. 
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Figure 2-5. Lua project configuartion 

 

Figure 2-6. Add c file to Lua project configuration 

 

 Configure Include Paths 

Figure 2-7. .h file path configuration 
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 Change part of the content under the loslib.c file 

1. Comment out if(L) exit(status) in the os_exit(lua_State * L) function, and add a

 status=status statement. 

Figure 2-8. Change os_exit(lua_State * L) 

 

2.Add time(time_t *time) and system(const char * string) 

Figure 2-9. Added function 
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The above changes are due to the use of Use MicroLIB mode 
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3. Lua usage test 

3.1. Test 

Lua usage tests are performed after the project configuration and related code changes are 

completed. This section uses the C language to interact with Lua to light up the led lights. 

Table 3-1. main.c 

#include "gd32f10x.h" 

#include "gd32f103e_eval.h" 

#include "systick.h" 

#include "lua.h" 

#include "lualib.h" 

#include "lauxlib.h" 

 

static int lua_led_on(lua_State *L) 

{ 

    gd_eval_led_on(LED3); 

    return 1; 

} 

static const struct luaL_Reg mylib[]= 

{ 

  {"led_on",lua_led_on}, 

  {NULL,NULL} 

}; 

const char LUA_SCRIPT_GLOBAL[] ="  \ 

while 1 do \ 

 led_on() \ 

end"; 

int main(void) 

{ 

    gd_eval_led_init(LED3); 

    while(1) 

    { 

        lua_State *L; 

        L = luaL_newstate();                   

        luaopen_base(L); 

        luaL_setfuncs(L, mylib, 0); 

        luaL_dostring(L, LUA_SCRIPT_GLOBAL); 

    } 

} 

After compiling the project and downloading it to the development board, LED3 will light up. 
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3.2. Other instruction 

The ROM and RAM occupancy after compiling and running is shown in the figure below. 

When transplanting to other development boards, pay attention to the memory size of the 

development board, otherwise there will be a problem of unsuccessful migration. 

Figure 3-1. ROM and RAM occupancy 
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4. Revision history 

Table 4-1. Revision history 

Version number Description Date 

1.0 Released the first draft 2021.3.18 
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