GigaDevice Semiconductor Inc.

GD32F10x
Arm® Cortex®-M3 32-bit MCU

Application Note
ANO19

° ANO19
Porting of Lua Interpreter Based on GD32F103

GigaDevice

Tables of Contents

Tables of CONtENLS ..o 2
LiSt Of FIQUIESooeeiii e e e e e e 3
LiSt Of TADIES ... 4
1. INtrodUCHiON 5
2. Luainterpreter migrationc.cooooiiiiiiiiiiii s 6
21, Luadownload ... 6
2.2, AddLuasourcecodefile...........cccoooiiiiiii 7
3. LU USAQE eSSto 1
L. TSt 11
3.2, Other iNStrUCtiON ... 12
4. ReVISION NISTONY ..o e 13

€

ANO19
Porting of Lua Interpreter Based on GD32F103

GigaDevice
List of Figures
Figure 2-1. Lua download interfaceccoooiiiiiiiii e 6
Figure 2-2. Lua historical version download interfacecccocoiiiiiii e, 6
Figure 2-3. Lua file after deCompresSion ... 7
Figure 2-4. Luafile add path ... 7
Figure 2-5. Lua project configuartioncc.ocoiiiiiiii 8
Figure 2-6. Add c file to Lua project configuration...................c..ccciiiiii e, 8
Figure 2-7. .h file path configuration.....................co 8
Figure 2-8. Change os_exit(lua_State * L)cccoriiiiiii e 9
Figure 2-9. Added fUNCLION..............cooiiiii e 9

Figure 3-1.

ROM and RAM OCCUPANCYooeiiiiiiaiiiiiiaiiiiiee sttt ettt e e s st e e s st e e e st e e e s nbne e e s snenes 12

° ANO19
Porting of Lua Interpreter Based on GD32F103

GigaDevice

List of Tables

=L o] L= o R 1 1 T 1] o X o O O PP PP PP PP P PTPPPPN 1
Table 4-1. ReViSion hiStOry............c.cooiiiiiiii e 13

€

GigaDevice

ANO19
Porting of Lua Interpreter Based on GD32F103

1.

Introduction

Lua is a powerful, efficient, lightweight, embeddable scripting language. It supports procedural
programming, object-oriented programming, functional programming, data-driven
programming, and data description. Lua combines simple procedural syntax with powerful
data description constructs based on associative arrays and extensible semantics. Lua is
dynamically typed, runs by interpreting bytecode with a register-based virtual machine, and
has automatic memory management with incremental garbage collection, making it ideal for
configuration, scripting, and rapid prototyping. Lua is implemented as a library by cleanC (a
subset common between standard C and C++). As an extended language, Lua does not have
the concept of a "main" program, it can only work in a host program, which is called an
embedded program or host for short. The host program can call functions to execute a small
pieces of Lua code, can read and write Lua variables, and can register C functions for Lua
code to call. Relying on C functions, Lua can share the same grammatical framework to
customize the programming language, which can be applied to different fields. The official
release of Lua contains a sample host program called Lua, which is a complete and
independent Lua interpreter implemented using the Lua library, which can be used for
interactive applications or batch processing.

Lua is an open source software language, and its use license determines its use without any
guarantee.

This article describes how to port Lua to the GD32 project.

GigaDevice

ANO19
Porting of Lua Interpreter Based on GD32F103

2.

2.1.

Lua interpreter migration

Lua download

The Lua interpreter transplantation platform introduced in this article is the GD32F103E-EVAL
board. The IDE platform ported by Lua interpreter is KEIL4.

Lua source code can be downloaded from https://www.lua.org/. The currently tested Lua
version is 5.4.2, as shown in the figure below.

Figure 2-1. Lua download interface

A Not secure || www.lua.org| s
\anguag,
Q09 e about Lua 5.4 2 released
S news
5 a5.36 s
S ' et started Lua 5.3 6 released
o \ download Fourth edition of
= ' documentation Programming in Lua
! . available as e-book R10O
) ’ community
N) site map Lua Workshop 2021 1o be
~ _ portugués held in Freiburg, Germany

" Download area

source - manuals - license - versions - work area

This repository contains the source code and the reference manuals for all released versions of Lua

If you want to build early versions of Lua using modern compilers, get the lua-all package

If you have arrived here by accident, start here.

If you are looking for work versions, release candidates, and other pre-releases of Lua, check out the worl
Al files are distributed under this license. Check their checksums to confirm the integrity of the packages.
% Source code

filename date size checksums

| 11— md5: 49c92d6a49faba342c35c52e 1ac3fé 1e
lua-5.4.2targz 2020-11-13 353472 sha1: 96d4a21393c94bed286b8dc0566f4bdde8730b22

! -09- md5: 1d575faef1c907292edd79e7a2784d30
lua-5.4.1-targz 2020-09-30 353985 shal: 88961eTd4fdas8ca2ch1639381d48dba880e803d

| 06- md5: dbf155764e5d433fc55ae80ear 060b60
lua-5.4.0targz 2020-06-18 349308 sha1: 8cdbffa8a214a23d190d7c45f38c19518ae62e89

! -09- md5: 83f23dbd5230140a3770d5f54076948d
lua-5.3.6.targz 2020-09-14 303770 shat: 27d20d6¢81292149bc4308525a9d6733c224fab

| 5 _06- md5: 414b4f3231d3514a68e0ab3dadee3455
lua-5.3 5 targz 2018-06-26 303543 sha1: 112eb10ff04d 1b4c9898e121d6bdf54a81482447

! 01- md5: 53a9c68bccleda58bde2095ad5cdfcB3
lua-5.34 targz 20170112 303586 shal. 79790cfd40e09ba796b01a57 1d4d6305201cd950

| _05-. md5: 703f75caa4idf4a911clai 2e67a27498
lua-5.3.3 targz 2016-05-30 204290 shat: a0341bc3d1415b814cc738b2ec1ae56045d64ef

md5: 33278c2ab5ee3c1a875be8d55¢1ca2al
lua-5.3.2 targz 20151125 266235 shal 7ad7adefS54fdca7d0c6536148da34579134a073

» Unzip the compressed package to get the file to be transplanted

° ANO19
Porting of Lua Interpreter Based on GD32F103

GigaDevice

Figure 2-3. Lua file after decompression

sy

1]

.'e-—{

doc

srC
|| Makefile
| README

lua-54.2

» Delete the lua.c and luac.c files under the decompressed lua-5.4.2\src file.

2.2. Add Lua source code file

The transplantation project introduced in this article is based on the 01_GPIO_Runnin
g_LED in GD32F10x Demo_Suite _V2.1.0

» Copy the files after deleting lua.c and luac.c to the GD32F10x_Firmware_Library f
ile, as shown in Figure 2.4.

Figure 2-4. Lua file add path

» GD32F10x Demo Suites V2.1.0 » |GD32F10x_Frmware Library

sy

:’::__i

]

CMSIS
GD32F10x_standard_peripheral
GD32F10x_usbd_driver
GD32F10x_usbis_driver
lua-5.4.2

» Open the project. Add all .c files in lua-5.4.2\src to the project.

e ANO19

N Porting of Lua Interpreter Based on GD32F103
GigaDevice

Figure 2-5. Lua project configuartion

J % [a]z ¢ &
Manage Project ltems x
Projsct Ttens | Folders/Extensions | Bocks |
[Project Targets: 173 4 # | [Growns. @ | 3 X[9 % [Fies X[+]+
GD32F103E EVAL Application
CMsIS
GD32F10x_Peripherals
GD32F10x_EVAL
Startup
4 | Add Files.. |
Set as Cument Target
Add Files as Image
o [o]

Figure 2-6. Add c file to Lua project configuration

|Groups: x%f}‘;fﬁles: X\Lf“
Application lapi.c A
CMSIS lauxlib.c

GD32F10x_Peripherals baselib.c

GD32F10x_EVAL Icode.c

Startup lcorolib.c

Doc Ictype.c

Idblib.c

Add all .c file€'fii src

Add Files as Image... |

» Configure Include Paths

Figure 2-7. .h file path configuration

ANO19

o Porting of Lua Interpreter Based on GD32F103

GigaDevice

EEE R

KA Options for Target 'GD32F103E

| Usez hsm | Linker | Debug | Utilities|

Device | Target | Output | Listing

rF Symbols

Define: IUSE_STDF‘EHIPH_DHIVEH.GD£F1DX_HD

Undefine: I

- Language / Code Generation

Optimization: | Level 0 (O0) 'I

[~ Optimize for Time
[~ Split Load and Store Multiple
¥ One ELF Section per Function

™ Strict ANSIC

™ Enum Container always int

I™ Plain Charis Signed

I™ Read-Only Posiion Independent
[~ Read-Wite Position Independent

‘Wamings:

I~ Thumb Maode

™ No Auto Includes
[~ €99 Mode

\n;ﬁ;‘:‘a | N\ MGD32F10x_Fimware_Librany\CMSIS; 4 \Gnazmmﬁmware,ubm.y\cumsmﬁ D
L]

Misc I
Controls

Compiler [-c ~cpu Cortex-M3 -D__MICROLIB -g -O0 ~apes=interwork ~splt_sections 1.\ \
control NGD32F10x_Fimware_Library\CMSIS -1\ .\ NGD32F 10« _Firmware _Library\CMSIS\GD
sting

6 oK Concel | Defalts | Help

Folder Setup [

Setup Compiler Include Paths: B+

AANAGD32F10x_Fimware_Librany\CMSIS

AN AGD32F10x_Firmware_Libran\CMSIS\GDWGD32F 10xnclude

A\ A\ AGD32F1(e_Fimware_Library\GD32F10x_standard_peripheral\Include
AL ilities

5 =

» Change part of the content under the loslib.c file

1. Comment out if(L) exit(status) in the os_exit(lua_State * L) function, and add a

status=status statement.

Figure 2-8. Change os_exit(lua_State * L)

394[ﬂstatic-int-as_exit-tlua_State-*L}-{

22 - -int -status;

386 --1f - (lua isboolean(L, 1))

387 -+ -status = (lua_tokoolean(L, -1) - ? -EXIT SUCCESS : EXIT FAILURE):
358 - -else

3589 -+ -status = (int)lual_optinteger(L, -1, EXIT SUCCESS):

400 --1f: (lua_ toboolean(L, - 2))

&01 . BT 1 :T'\.-

402 A FFif- (L) -exit (status); }/* 'if' -to avoid warnings: for -unreachab]
403 | - -status -= status; |

404 - recurn-uJs

405 | }

2.Add time(time_t *time) and system(const char * string)

Figure 2-9. Added function

€

GigaDevice

ANO19

Porting of Lua Interpreter Based on GD32F103

432
433
434
435
436
237
438
438
440
441

time t-time(time t-* time)
B¢

coreturn-0;

int - -system(const-char *-string)
B

- -return -0

The above changes are due to the

use of Use MicroLIB mode

10

€

ANO19

Porting of Lua Interpreter Based on GD32F103

GigaDevice
3. Lua usage test
3.1. Test

completed. This section uses the C language to interact with Lua to light up the led lights.

Table 3-1. main.c

#include "gd32f10x.h"
#include "gd32f103e_eval.h"
#include "systick.h"

#include "lua.h”

#include "lualib.h"

#include "lauxlib.h"

static int lua_led_on(lua_State *L)
{
gd_eval_led_on(LED3);
return 1;
}
static const struct luaL_Reg mylib[]=
{
{"led_on",lua_led_on},
{NULL,NULL}
h

const char LUA_SCRIPT_GLOBAL[="

while 1 do \
led_on()\
end";

int main(void)

{
gd_eval_led_init(LED3);
while(1)
{
lua_State *L;
L = luaL_newstate();
luaopen_base(L);
luaL_setfuncs(L, mylib, 0);
luaL_dostring(L, LUA_SCRIPT_GLOBAL);
}
}

Lua usage tests are performed after the project configuration and related code changes are

After compiling the project and downloading it to the development board, LED3 will light up.

11

€

GigaDevice

ANO19
Porting of Lua Interpreter Based on GD32F103

3.2.

Other instruction

The ROM and RAM occupancy after compiling and running is shown in the figure below.
When transplanting to other development boards, pay attention to the memory size of the
development board, otherwise there will be a problem of unsuccessful migration.

Figure 3-1. ROM and RAM occupancy

-Total -RO- -5ize - (Code-+-RO-Data) ----- - - - §9808 - (- -87.70kB)
‘Total -EW- -5ize- (EW -Data -+-ZI-Data) --------- - - 16544 - (- -16.16kB)
-Total -ROM-5ize- (Code-+-RO-Data- -+ -EW-Data) --- - - - §99&4. (- -87.86KB)

12

€

GigaDevice

ANO19

Porting of Lua Interpreter Based on GD32F103

4.

Revision history

Table 4-1. Revision history

Version number

Description

Date

1.0

Released the first draft

2021.3.18

13

° ANO19
Porting of Lua Interpreter Based on GD32F103

GigaDevice

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any
product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and
treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and
treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and

brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability
arising out of the application or use of any Product described in this document. Any information provided in this document is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality
and safety of any application made of this information and any resulting product. Except for customized products which has been
expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business,
industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components
in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control
instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments,
life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution
control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury,
death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling
the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers
shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising
from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers
and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or

death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes,

corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2021 GigaDevice — All rights reserved

14

	Tables of Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Lua interpreter migration
	2.1. Lua download
	2.2. Add Lua source code file

	3. Lua usage test
	3.1. Test
	3.2. Other instruction

	4. Revision history

