

GigaDevice Semiconductor Inc.

GD32F10x

Arm® Cortex®-M3 32-bit MCU

Application Note

AN019

AN019
Porting of Lua Interpreter Based on GD32F103

2

Tables of Contents

Tables of Contents ... 2

List of Figures .. 3

List of Tables .. 4

1. Introduction .. 5

2. Lua interpreter migration .. 6

2.1. Lua download .. 6

2.2. Add Lua source code file .. 7

3. Lua usage test .. 11

3.1. Test ... 11

3.2. Other instruction ... 12

4. Revision history ... 13

AN019
Porting of Lua Interpreter Based on GD32F103

3

List of Figures

Figure 2-1. Lua download interface ... 6

Figure 2-2. Lua historical version download interface .. 6

Figure 2-3. Lua file after decompression ... 7

Figure 2-4. Lua file add path ... 7

Figure 2-5. Lua project configuartion .. 8

Figure 2-6. Add c file to Lua project configuration ... 8

Figure 2-7. .h file path configuration .. 8

Figure 2-8. Change os_exit(lua_State * L) ... 9

Figure 2-9. Added function.. 9

Figure 3-1. ROM and RAM occupancy ... 12

AN019
Porting of Lua Interpreter Based on GD32F103

4

List of Tables

Table 3-1. main.c ... 11

Table 4-1. Revision history .. 13

AN019
Porting of Lua Interpreter Based on GD32F103

5

1. Introduction

Lua is a powerful, efficient, lightweight, embeddable scripting language. It supports procedural

programming, object-oriented programming, functional programming, data-driven

programming, and data description. Lua combines simple procedural syntax with powerful

data description constructs based on associative arrays and extensible semantics. Lua is

dynamically typed, runs by interpreting bytecode with a register-based virtual machine, and

has automatic memory management with incremental garbage collection, making it ideal for

configuration, scripting, and rapid prototyping. Lua is implemented as a library by cleanC (a

subset common between standard C and C++). As an extended language, Lua does not have

the concept of a "main" program, it can only work in a host program, which is called an

embedded program or host for short. The host program can call functions to execute a small

pieces of Lua code, can read and write Lua variables, and can register C functions for Lua

code to call. Relying on C functions, Lua can share the same grammatical framework to

customize the programming language, which can be applied to different fields. The official

release of Lua contains a sample host program called Lua, which is a complete and

independent Lua interpreter implemented using the Lua library, which can be used for

interactive applications or batch processing.

Lua is an open source software language, and its use license determines its use without any

guarantee.

This article describes how to port Lua to the GD32 project.

AN019
Porting of Lua Interpreter Based on GD32F103

6

2. Lua interpreter migration

2.1. Lua download

The Lua interpreter transplantation platform introduced in this article is the GD32F103E-EVAL

board. The IDE platform ported by Lua interpreter is KEIL4.

Lua source code can be downloaded from https://www.lua.org/. The currently tested Lua

version is 5.4.2, as shown in the figure below.

Figure 2-1. Lua download interface

Figure 2-2. Lua historical version download interface

 Unzip the compressed package to get the file to be transplanted

AN019
Porting of Lua Interpreter Based on GD32F103

7

Figure 2-3. Lua file after decompression

 Delete the lua.c and luac.c files under the decompressed lua-5.4.2\src file.

2.2. Add Lua source code file

The transplantation project introduced in this article is based on the 01_GPIO_Runnin

g_LED in GD32F10x Demo_Suite _V2.1.0

 Copy the files after deleting lua.c and luac.c to the GD32F10x_Firmware_Library f

ile, as shown in Figure 2.4.

Figure 2-4. Lua file add path

 Open the project. Add all .c files in lua-5.4.2\src to the project.

AN019
Porting of Lua Interpreter Based on GD32F103

8

Figure 2-5. Lua project configuartion

Figure 2-6. Add c file to Lua project configuration

 Configure Include Paths

Figure 2-7. .h file path configuration

AN019
Porting of Lua Interpreter Based on GD32F103

9

 Change part of the content under the loslib.c file

1. Comment out if(L) exit(status) in the os_exit(lua_State * L) function, and add a

 status=status statement.

Figure 2-8. Change os_exit(lua_State * L)

2.Add time(time_t *time) and system(const char * string)

Figure 2-9. Added function

AN019
Porting of Lua Interpreter Based on GD32F103

10

The above changes are due to the use of Use MicroLIB mode

AN019
Porting of Lua Interpreter Based on GD32F103

11

3. Lua usage test

3.1. Test

Lua usage tests are performed after the project configuration and related code changes are

completed. This section uses the C language to interact with Lua to light up the led lights.

Table 3-1. main.c

#include "gd32f10x.h"

#include "gd32f103e_eval.h"

#include "systick.h"

#include "lua.h"

#include "lualib.h"

#include "lauxlib.h"

static int lua_led_on(lua_State *L)

{

 gd_eval_led_on(LED3);

 return 1;

}

static const struct luaL_Reg mylib[]=

{

 {"led_on",lua_led_on},

 {NULL,NULL}

};

const char LUA_SCRIPT_GLOBAL[] =" \

while 1 do \

 led_on() \

end";

int main(void)

{

 gd_eval_led_init(LED3);

 while(1)

 {

 lua_State *L;

 L = luaL_newstate();

 luaopen_base(L);

 luaL_setfuncs(L, mylib, 0);

 luaL_dostring(L, LUA_SCRIPT_GLOBAL);

 }

}

After compiling the project and downloading it to the development board, LED3 will light up.

AN019
Porting of Lua Interpreter Based on GD32F103

12

3.2. Other instruction

The ROM and RAM occupancy after compiling and running is shown in the figure below.

When transplanting to other development boards, pay attention to the memory size of the

development board, otherwise there will be a problem of unsuccessful migration.

Figure 3-1. ROM and RAM occupancy

AN019
Porting of Lua Interpreter Based on GD32F103

13

4. Revision history

Table 4-1. Revision history

Version number Description Date

1.0 Released the first draft 2021.3.18

AN019
Porting of Lua Interpreter Based on GD32F103

14

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any

product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and

treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and

treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and

brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability

arising out of the application or use of any Product described in this document. Any information provided in this document is provided

only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality

and safety of any application made of this information and any resulting product. Except for customized products which has been

expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business,

industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components

in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control

instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments,

life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution

control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury,

death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling

the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers

shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising

from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it’s suppliers

and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or

death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes,

corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2021 GigaDevice – All rights reserved

	Tables of Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Lua interpreter migration
	2.1. Lua download
	2.2. Add Lua source code file

	3. Lua usage test
	3.1. Test
	3.2. Other instruction

	4. Revision history

