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1. Introduction 

CmBacktrace (Cortex Microcontroller Backtrace) is an open source library that automatically 

tracks and locates error codes for ARM Cortex-M series MCUs, and automatically analyzes 

the causes of errors. The main features are as follows: 

 Supported errors include:  

 Assert 

 Fault (Hard Fault, Memory Management Fault, Bus Fault, Usage Fault, Debug Fault) 

 Failure reason Automatic diagnosis: When a failure occurs, the cause of the failure can 

be automatically analyzed, and the code location of the failure can be located, without 

the need to manually analyze the complicated fault registers; -Output the function call 

stack of the error site (need to cooperate with the addr2line tool for precise positioning), 

restore the field information when the error occurred, and locate the problem code 

location and logic more quickly and accurately. You can also use the library under normal 

conditions to get the current function call stack; 

 Support bare metal and the following operating system platforms:  

 RT-Thread 

 UCOS 

 FreeRTOS (source code needs to be modified) 

 According to the error scene status, output the corresponding thread stack or C main 

stack; 

 The fault diagnosis information supports multiple languages (currently: Simplified 

Chinese, English); 

 Adapt to Cortex-M0/M3/M4/M7 MCU; 

 Support IAR, KEIL, GCC compiler; 

This document describes how to port CmBacktrace to the GD32 project. 
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2. Porting CmBacktrace  

2.1. Download CmBacktrace 

The CmBacktrace transplantation platform introduced in this document is the GD32E507Z-

EVAL development board. The IDE platforms ported by CmBacktrace are KEIL5 and IAR. 

CmBacktrace source code can be downloaded from https://github.com/armink/CmBacktrace. 

The currently tested CmBacktrace software version is 1.4.0, as shown in the figure below. 

Figure2-1. Version information of CmBacktrace 

 

Figure 2-2. Flowchart of MPU 

 

2.2. Add CmBacktrace source file 

The migration method introduced in this article is based on the 01_GPIO_Running_LED 

project in GD32E507Z_EVAL_Demo_Suites. First, copy the CmBacktrace\cm_backtrace 

library file to the 01_GPIO_Running_LED file. Then open the project and add cm_backtrace.c 

and cmb_fault.S to the project. 
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Figure 2-3. Project configuration of Keil and IAR 

  

Since cmb_fault.S will use HardFault_Handler, the original HardFault_Handler function 

should be commented. 

Figure 2-4. Comment the original HardFault Handler function 

 

2.3. Project configuration of different IDEs 

CmBacktrace must be configured to support the C99 standard when using the KEIL5 compiler. 

The engineering configuration of Keil and IAR is shown in the figure below. 
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Figure 2-5. Project configuration of Keil 

 

Figure 2-6. Project configuration of IAR 

 

2.4. CmBacktrace parameter configuration 

The configuration options for different platforms and scenarios are defined in cmb_def.h. 

Table 2-1. Configuration of CmBacktrace parameter 

Configuration Name Function description Note 

cmb_println(...) 
Error and diagnostic 

information output 
Must be configured 

CMB_USING_BARE_METAL_PLATFORM 
Whether it is used on a bare 

metal platform 

Define this macro if it is 

used 

CMB_USING_OS_PLATFORM 
Whether it is used on the 

operating system platform 

Operating system and bare 

metal must choose one of 

two 
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Configuration Name Function description Note 

CMB_OS_PLATFORM_TYPE Operating System Platform RTT/uCOS/FREERTOS 

CMB_CPU_PLATFORM_TYPE Operating System Platform M0/M3/M4/M7/M33 

CMB_USING_DUMP_STACK_INFO 
Whether to use Dump stack 

function 
Use to define this macro 

CMB_PRINT_LANGUAGE 
Language when outputting 

information 
CHINESE/ENGLISH 

The configuration in the CmBacktrace GD32E507Z project is shown in the figure below. 

Figure 2-7. Configuration of cmb_def.h 

 

2.5. Others 

The cmb_def.h in the original code uses the __CC_ARM macro to distinguish which IDE 

environment it is. For the ARM Compiler Version 6 compiler, the macro used is 

__ARMCC_VERSION, as shown in the figure below. 
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Figure 2-8. Conditional compilation of cmb_def.h 

 

Figure 2-9. Explanation of ARM Compiler Version 6 on __ARMCC_VERSION 

 

Therefore, the ARM Compiler Version 6 compiler is used, some modifications should be made 

as follows. 
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Figure 2-10. Modification of compiler using ARM compiler version 6 
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3. Functional test of CmBacktrace 

This chapter introduces HardFault caused by misalignment and division by zero errors, which 

are captured by CmBacktrace and printed through the serial port, as shown below. 

Table 3-1. fault_test_by_unalign 

void fault_test_by_unalign(void) { 

    volatile int * SCB_CCR = (volatile int *) 0xE000ED14; // SCB->CCR 

    volatile int * p; 

    volatile int value; 

 

    *SCB_CCR |= (1 << 3); /* bit3: UNALIGN_TRP. */ 

 

    p = (int *) 0x00; 

    value = *p; 

    printf("addr:0x%02X value:0x%08X\r\n", (int) p, value); 

 

    p = (int *) 0x04; 

    value = *p; 

    printf("addr:0x%02X value:0x%08X\r\n", (int) p, value); 

 

    p = (int *) 0x03; 

    value = *p; 

    printf("addr:0x%02X value:0x%08X\r\n", (int) p, value); 

} 

Table 3-2. fault_test_by_div0 

void fault_test_by_div0(void) { 

    volatile int * SCB_CCR = (volatile int *) 0xE000ED14; // SCB->CCR 

    int x, y, z; 

 

    *SCB_CCR |= (1 << 4); /* bit4: DIV_0_TRP. */ 

 

    x = 10; 

    y = 0; 

    z = x / y; 

    printf("z:%d\n", z); 

} 

According to the specific operating system of the computer, the addr2line.exe stored in the 

tools folder of CmBacktrace can be directly copied to C:\Windows, or the tools folder path of 

the CmBacktrace warehouse can be added to the environment variable path. This can ensure 

that the command line tool can use the addr2line command normally. 

The fault_test_by_unalign error report generated under Keil and the result printed by 
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addr2line are as follows. 

Figure 3-1. Fault_test_by_unalign error report generated under Keil 

 

Figure 3-2. According to the axf file generated by Keil, use the addr2line tool to obtain 

the function call stack information 

 

The fault_test_by_unalign error report generated under IAR and the result printed by 

addr2line are as follows. 
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Figure 3-3. Fault_test_by_unalign error report generated under IAR 

 

Figure 3-4. According to the axf file generated by IAR, use the addr2line tool to obtain 

the function call stack information 
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4. Revision history 

Table 4-1. Revision history 

Revision No. Description Date 

1.0 Initial Release Nov.30 2021 
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