

GigaDevice Semiconductor Inc.

Arm® Cortex®- M3/M4/M23/M33 32-bit MCU

Application Note

AN020

AN020
How to use CmBacktrace to track faults in GD32 Cortex-M series

2

Table of Contents

Table of Contents ... 2

List of Figures .. 3

List of Tables .. 4

1. Introduction .. 5

2. CmBacktrace Porting .. 6

2.1. Download CmBacktrace .. 6

2.2. Add CmBacktrace source file ... 6

2.3. Project configuration of different IDEs .. 7

2.4. CmBacktrace parameter configuration .. 8

2.5. Others ... 9

3. Functional test of CmBacktrace ... 12

4. Revision history ... 15

AN020
How to use CmBacktrace to track faults in GD32 Cortex-M series

3

List of Figures

Figure2-1. Version information of CmBacktrace .. 6

Figure 2-2. Flowchart of MPU ... 6

Figure 2-3. Project configuration of Keil and IAR ... 7

Figure 2-4. Comment the original HardFault Handler function ... 7

Figure 2-5. Project configuration of Keil ... 8

Figure 2-6. Project configuration of IAR .. 8

Figure 2-7. Configuration of cmb_def.h ... 9

Figure 2-8. Conditional compilation of cmb_def.h ... 10

Figure 2-9. Explanation of ARM Compiler Version 6 on __ARMCC_VERSION 10

Figure 2-10. Modification of compiler using ARM compiler version 6 .. 11

Figure 3-1. Fault_test_by_unalign error report generated under Keil .. 13

Figure 3-2. According to the axf file generated by Keil, use the addr2line tool to obtain the

function call stack information ... 13

Figure 3-3. Fault_test_by_unalign error report generated under IAR .. 14

Figure 3-4. According to the axf file generated by IAR, use the addr2line tool to obtain the

function call stack information ... 14

AN020
How to use CmBacktrace to track faults in GD32 Cortex-M series

4

List of Tables

Table 2-1. Configuration of CmBacktrace parameter ... 8

Table 3-1. fault_test_by_unalign .. 12

Table 3-2. fault_test_by_div0 .. 12

Table 4-1. Revision history ... 15

AN020
How to use CmBacktrace to track faults in GD32 Cortex-M series

5

1. Introduction

CmBacktrace (Cortex Microcontroller Backtrace) is an open source library that automatically

tracks and locates error codes for ARM Cortex-M series MCUs, and automatically analyzes

the causes of errors. The main features are as follows:

 Supported errors include:

 Assert

 Fault (Hard Fault, Memory Management Fault, Bus Fault, Usage Fault, Debug Fault)

 Failure reason Automatic diagnosis: When a failure occurs, the cause of the failure can

be automatically analyzed, and the code location of the failure can be located, without

the need to manually analyze the complicated fault registers; -Output the function call

stack of the error site (need to cooperate with the addr2line tool for precise positioning),

restore the field information when the error occurred, and locate the problem code

location and logic more quickly and accurately. You can also use the library under normal

conditions to get the current function call stack;

 Support bare metal and the following operating system platforms:

 RT-Thread

 UCOS

 FreeRTOS (source code needs to be modified)

 According to the error scene status, output the corresponding thread stack or C main

stack;

 The fault diagnosis information supports multiple languages (currently: Simplified

Chinese, English);

 Adapt to Cortex-M0/M3/M4/M7 MCU;

 Support IAR, KEIL, GCC compiler;

This document describes how to port CmBacktrace to the GD32 project.

AN020
How to use CmBacktrace to track faults in GD32 Cortex-M series

6

2. Porting CmBacktrace

2.1. Download CmBacktrace

The CmBacktrace transplantation platform introduced in this document is the GD32E507Z-

EVAL development board. The IDE platforms ported by CmBacktrace are KEIL5 and IAR.

CmBacktrace source code can be downloaded from https://github.com/armink/CmBacktrace.

The currently tested CmBacktrace software version is 1.4.0, as shown in the figure below.

Figure2-1. Version information of CmBacktrace

Figure 2-2. Flowchart of MPU

2.2. Add CmBacktrace source file

The migration method introduced in this article is based on the 01_GPIO_Running_LED

project in GD32E507Z_EVAL_Demo_Suites. First, copy the CmBacktrace\cm_backtrace

library file to the 01_GPIO_Running_LED file. Then open the project and add cm_backtrace.c

and cmb_fault.S to the project.

AN020
How to use CmBacktrace to track faults in GD32 Cortex-M series

7

Figure 2-3. Project configuration of Keil and IAR

Since cmb_fault.S will use HardFault_Handler, the original HardFault_Handler function

should be commented.

Figure 2-4. Comment the original HardFault Handler function

2.3. Project configuration of different IDEs

CmBacktrace must be configured to support the C99 standard when using the KEIL5 compiler.

The engineering configuration of Keil and IAR is shown in the figure below.

AN020
How to use CmBacktrace to track faults in GD32 Cortex-M series

8

Figure 2-5. Project configuration of Keil

Figure 2-6. Project configuration of IAR

2.4. CmBacktrace parameter configuration

The configuration options for different platforms and scenarios are defined in cmb_def.h.

Table 2-1. Configuration of CmBacktrace parameter

Configuration Name Function description Note

cmb_println(...)
Error and diagnostic

information output
Must be configured

CMB_USING_BARE_METAL_PLATFORM
Whether it is used on a bare

metal platform

Define this macro if it is

used

CMB_USING_OS_PLATFORM
Whether it is used on the

operating system platform

Operating system and bare

metal must choose one of

two

AN020
How to use CmBacktrace to track faults in GD32 Cortex-M series

9

Configuration Name Function description Note

CMB_OS_PLATFORM_TYPE Operating System Platform RTT/uCOS/FREERTOS

CMB_CPU_PLATFORM_TYPE Operating System Platform M0/M3/M4/M7/M33

CMB_USING_DUMP_STACK_INFO
Whether to use Dump stack

function
Use to define this macro

CMB_PRINT_LANGUAGE
Language when outputting

information
CHINESE/ENGLISH

The configuration in the CmBacktrace GD32E507Z project is shown in the figure below.

Figure 2-7. Configuration of cmb_def.h

2.5. Others

The cmb_def.h in the original code uses the __CC_ARM macro to distinguish which IDE

environment it is. For the ARM Compiler Version 6 compiler, the macro used is

__ARMCC_VERSION, as shown in the figure below.

AN020
How to use CmBacktrace to track faults in GD32 Cortex-M series

10

Figure 2-8. Conditional compilation of cmb_def.h

Figure 2-9. Explanation of ARM Compiler Version 6 on __ARMCC_VERSION

Therefore, the ARM Compiler Version 6 compiler is used, some modifications should be made

as follows.

AN020
How to use CmBacktrace to track faults in GD32 Cortex-M series

11

Figure 2-10. Modification of compiler using ARM compiler version 6

AN020
How to use CmBacktrace to track faults in GD32 Cortex-M series

12

3. Functional test of CmBacktrace

This chapter introduces HardFault caused by misalignment and division by zero errors, which

are captured by CmBacktrace and printed through the serial port, as shown below.

Table 3-1. fault_test_by_unalign

void fault_test_by_unalign(void) {

 volatile int * SCB_CCR = (volatile int *) 0xE000ED14; // SCB->CCR

 volatile int * p;

 volatile int value;

 SCB_CCR |= (1 << 3); / bit3: UNALIGN_TRP. */

 p = (int *) 0x00;

 value = *p;

 printf("addr:0x%02X value:0x%08X\r\n", (int) p, value);

 p = (int *) 0x04;

 value = *p;

 printf("addr:0x%02X value:0x%08X\r\n", (int) p, value);

 p = (int *) 0x03;

 value = *p;

 printf("addr:0x%02X value:0x%08X\r\n", (int) p, value);

}

Table 3-2. fault_test_by_div0

void fault_test_by_div0(void) {

 volatile int * SCB_CCR = (volatile int *) 0xE000ED14; // SCB->CCR

 int x, y, z;

 SCB_CCR |= (1 << 4); / bit4: DIV_0_TRP. */

 x = 10;

 y = 0;

 z = x / y;

 printf("z:%d\n", z);

}

According to the specific operating system of the computer, the addr2line.exe stored in the

tools folder of CmBacktrace can be directly copied to C:\Windows, or the tools folder path of

the CmBacktrace warehouse can be added to the environment variable path. This can ensure

that the command line tool can use the addr2line command normally.

The fault_test_by_unalign error report generated under Keil and the result printed by

AN020
How to use CmBacktrace to track faults in GD32 Cortex-M series

13

addr2line are as follows.

Figure 3-1. Fault_test_by_unalign error report generated under Keil

Figure 3-2. According to the axf file generated by Keil, use the addr2line tool to obtain

the function call stack information

The fault_test_by_unalign error report generated under IAR and the result printed by

addr2line are as follows.

AN020
How to use CmBacktrace to track faults in GD32 Cortex-M series

14

Figure 3-3. Fault_test_by_unalign error report generated under IAR

Figure 3-4. According to the axf file generated by IAR, use the addr2line tool to obtain

the function call stack information

AN020
How to use CmBacktrace to track faults in GD32 Cortex-M series

15

4. Revision history

Table 4-1. Revision history

Revision No. Description Date

1.0 Initial Release Nov.30 2021

AN020
How to use CmBacktrace to track faults in GD32 Cortex-M series

16

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any

product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and

treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and

treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and

brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability

arising out of the application or use of any Product described in this document. Any information provided in this document is provided

only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality

and safety of any application made of this information and any resulting product. Except for customized products which has been

expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business,

industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components

in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control

instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments,

life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution

control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury,

death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling

the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers

shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising

from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it’s suppliers

and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or

death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes,

corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2021 GigaDevice – All rights reserved

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Porting CmBacktrace
	2.1. Download CmBacktrace
	2.2. Add CmBacktrace source file
	2.3. Project configuration of different IDEs
	2.4. CmBacktrace parameter configuration
	2.5. Others

	3. Functional test of CmBacktrace
	4. Revision history

