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1. Introduction 

SDRAM is short for Synchronous Dynamic Random Access Memory. Synchronization means 

that memory work needs to synchronize clock, and internal command sending and data 

transmission are based on it; Dynamic means that the storage array needs constant refresh 

to ensure that the stored data is not lost. Because the data stored in SDRAM works through 

the capacitor, because the capacitor will discharge in the natural state, if the discharge is 

finished, it means that the data in SDRAM is lost, so SDRAM needs to refresh before the 

discharge of the capacitor is finished. Random means that the data is not stored in linear 

order, but read and write the data freely at the specified address. 

Since SDRAM has some of the same characteristics as SRAM, if you need to run code on 

SDRAM, in addition to using MPU, you can also map SDRAM Device0 address (0xC0000000) 

to 0x00000000 to run the code stored in SDRAM. This article introduces how to map SDRAM 

Device0 address (0xC0000000) to 0x00000000 to run the code on GD32F450. Among them, 

APP_GPIO_Running_LED is the APP program programmed to SDRAM Device0 address 

(0xC0000000). BOOT_EXMC_SDRAM is the BOOT program programmed to address 

0x08000000. 
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2. FLM file 

2.1. Custom SDRAM_256Mb.FLM file 

This AN is based on GD32F450Z-EVAL evaluation board, equipped with a MT48LZ16M16 

A2P-6AIT SDRAM with a capacity of 256Mb. 

When making FLM files, the starting address is 0x00000000. The details are shown in Figure 

2-1. Address range of FLM file. 

Figure 2-1. Address range of FLM file 

 

2.2. Copy the FLM file to the Keil 5 installation path 

Copy the SDRAM_256Mb.FLM file to the Keil 5 installation path, generally 

"C:\Keil_v5\ARM\Flash". 
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3. APP_GPIO_Running_LED project 

3.1. Modify the project scatter-loading file 

Since the APP_GPIO_Running_LED code is to run at address 0x00000000, it is necessary 

to modify the scatter-loading file of the project and load it to address 0x00000000. The details 

are shown in Table 3-1. Scatter-loading file of APP_GPIO_Running_LED. 

Table 3-1. Scatter-loading file of APP_GPIO_Running_LED 

LR_IROM1 0x00000000 0x00100000  {    ; load region size_region 

  ER_IROM1 0x00000000 0x00100000  {  ; load address = execution address 

   *.o (RESET, +First) 

   *(InRoot$$Sections) 

   .ANY (+RO) 

   .ANY (+XO) 

  } 

  RW_IRAM1 0x20000000 0x00030000  {  ; RW data 

   .ANY (+RW +ZI) 

  } 

} 

3.2. Modify the entry address of the interrupt vector table 

Since the code itself runs at address 0x00000000, it is necessary to modify the entry address 

of the interrupt vector table of the APP project. You need to call nvic_vector_table_set at the 

appropriate location and set the entry address of the interrupt vector table to 0x00000000 and 

the offset to 0, as shown in Table 3-2. Setting the entry address of interrupt vector table. 
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Table 3-2. Setting the entry address of interrupt vector table 

/*! 

    \brief      main function 

    \param[in]  none 

    \param[out] none 

    \retval     none 

*/ 

int main(void) 

{ 

    nvic_vector_table_set(0, 0); 

    /* configure systick */ 

systick_config(); 

 

…… 

} 

3.3. Add the SDRAM_256Mb.FLM file to the Keil project 

Open the Keil project, in the Keil Flash download interface, add the SDRAM_256Mb.FLM file, 

and change the RAM for Algorithm Size to 0x2000, as shown in Figure 3-1. Configration of 

Flash Algorithm in Keil project. Then download the program to SDRAM. 

Figure 3-1. Configration of Flash Algorithm in Keil project 

 

 

  



AN022 
How to map 0xC0000000 to 0x00000000 to run the program 

9 

 

4. BOOT_EXMC_SDRAM project 

In the BOOT_EXMC_SDRAM project, you need to change the BOOT_MODE of the 

SYSCFG_CFG0 register to 0b`100. The specific implementation is shown in Table 4-1. Set 

boot mode to EXMC SDRAM. 

Table 4-1. Set boot mode to EXMC SDRAM 

    …… 

    rcu_periph_clock_enable(RCU_SYSCFG); 

    syscfg_bootmode_config(SYSCFG_BOOTMODE_EXMC_SDRAM); 

    …… 

If EXMC clock is enabled and EXMC SDRAM has been configured in BOOT_EXMC_SDRAM, 

you can observe the value of SDRAM through debugging to see if it is the 

APP_GPIO_Running_LED code. The details are shown in Figure 4-1. The value of 

0xC0000000 in debug mode and Figure 4-2. The bin file compiled by the 

APP_GPIO_Running_LED project. 

Figure 4-1. The value of 0xC0000000 in debug mode 
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Figure 4-2. The bin file compiled by the APP_GPIO_Running_LED project 

 

 

 

After configuring the BOOT_MODE of the SYSCFG_CFG0 register to 0b`100, you need to 

jump the program to the address where the APP_GPIO_Running_LED project is located to 

run the code. The specific configuration is shown in Table 4-2. Jump to the address where 

the APP project is located to run the code. 
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Table 4-2. Jump to the address where the APP project is located to run the code 

typedef  void (*pFunction)(void); 

#define ApplicationAddress          0xC0000000 

 

pFunction Jump_To_Application; 

uint32_t JumpAddress = 0; 

 

…… 

    if (((*(__IO uint32_t*)ApplicationAddress) & 0x2FFE0000 ) == 0x20000000) { 

        JumpAddress = *(__IO uint32_t*) (ApplicationAddress + 4); 

        Jump_To_Application = (pFunction) JumpAddress; 

        __set_MSP(*(__IO uint32_t*) ApplicationAddress); 

        Jump_To_Application(); 

    } 

…… 

After resetting the chip, it can be observed that the APP code is already running normally. 
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5. Revision history 

Table 5-1. Revision history 

Revision No. Description Date 

1.0 Initial Release Nov.30 2021 
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