
 

 

 

GigaDevice Semiconductor Inc. 

 

Arm® Cortex®-M3 32-bit MCU 

 

 

 

 

 

 

Application Note 

AN028 
 

 

 

 

 

  



AN028 
Cortex-M3 kernel hardfault error debugging and locating method 

2 
 

Table of Contents 

Table of Contents ................................................................................................................... 2 

List of Figures ..................................................................................................................... 3 

1. The causes of Hard fault The causes of Hard fault .......................................................... 5 

1.1 Common causes of hardware ......................................................................................... 5 

1.2 Common causes of software .......................................................................................... 5 

2. Debug location method of kernel HardFault .................................................................. 6 

2.1 change the startup file of startup.s ................................................................................ 6 

2.2 hard_fault_handler_c function ....................................................................................... 6 

2.3 description of the Cortex-M3 kernel error register ...................................................... 8 

3. Check hard fault error of Keil program through JLINK .................................................. 10 

3.1 Tools used for troubleshooting.................................................................................... 10 

3.2 Troubleshooting steps .................................................................................................. 10 

3.2.1 Generate map file and lst file using Keil ............................................................................................ 10 

3.2.2 Save the RAM when a problem occurs ............................................................................................. 10 

3.2.3 Analysis problems ................................................................................................................................. 11 

3.3 Usage method of Jlink Command ................................................................................ 12 

4. Revision history .......................................................................................................... 16 

  



AN028 
Cortex-M3 kernel hardfault error debugging and locating method 

3 
 

List of Figures 

Figure 3-1. The map and LST files generated by Keil ................................................................... 10 

Figure 3-2. Input halt to stop the kernal ............................................................................................ 11 

Figure 3-3. Save the RAM content ...................................................................................................... 11 

Figure 3-4. View the stack from the map file ................................................................................... 12 

Figure 3-5. Analyze the BIN file ........................................................................................................... 12 

Figure 3-6. f command .......................................................................................................................... 13 

Figure 3-7. h command ......................................................................................................................... 13 

Figure 3-8. s command .......................................................................................................................... 13 

Figure 3-9. st command ........................................................................................................................ 13 

Figure 3-10. Read instruction .............................................................................................................. 14 

Figure 3-11. Write instruction .............................................................................................................. 14 

Figure 3-12. Erase instruction ............................................................................................................. 15 

 

  



AN028 
Cortex-M3 kernel hardfault error debugging and locating method 

4 
 

List of Tables 

Table 4-1. Revision history ................................................................................................................... 16 

 

 

  



AN028 
Cortex-M3 kernel hardfault error debugging and locating method 

5 
 

1. The causes of Hard fault The causes of Hard fault 

1.1 Common causes of hardware 

 Power design error, resulting in device power supply instability.  

 The quality of power supply is not very well, too much noise.  

 The device is not grounded properly.  

 For devices with Vcap pin, the handling is not proper.  

 There is a strong interference source in the circuit, causing interference to the device. 

1.2 Common causes of software 

 Null pointer was used.  

 The calculation of address offset is incorrect.  

 Program error caused by array bound.  

 The improper use of the dynamic memory, leading to access memory address has been 

released.  

 Visit to the local variable by address which has already invalidated.  

Generally, the possibility of Hard Fault caused by hardware is low, most are caused by 

software. Therefore, if the hardware interrupt error occurs, the error investigation will be 

through software.  
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2. Debug location method of kernel HardFault 

2.1 change the startup file of startup.s 

First, change the startup file of startup.s, replace the HardFault_Handler code in the following 

code.  

HardFault_Handler\ 

    PROC 

    IMPORT  hard_fault_handler_c 

    TST LR, #4 

    ITE EQ 

    MRSEQ R0, MSP 

    MRSNE R0, PSP 

    B  hard_fault_handler_c 

    ENDP 

2.2 hard_fault_handler_c function 

Then put the hard_fault_handler_c function in the code of the C file. The code shows as below.  

void hard_fault_handler_c(unsigned int * hardfault_args) 

{ 

 static unsigned int stacked_r0; 

 static unsigned int stacked_r1; 

 static unsigned int stacked_r2; 

 static unsigned int stacked_r3; 

 static unsigned int stacked_r12; 

 static unsigned int stacked_lr; 

 static unsigned int stacked_pc; 

 static unsigned int stacked_psr; 

 static unsigned int SHCSR; 

 static unsigned char MFSR; 
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 static unsigned char BFSR; 

 static unsigned short int UFSR; 

 static unsigned int HFSR; 

 static unsigned int DFSR; 

 static unsigned int MMAR; 

 static unsigned int BFAR; 

  

 stacked_r0 = ((unsigned long) hardfault_args[0]); 

 stacked_r1 = ((unsigned long) hardfault_args[1]); 

 stacked_r2 = ((unsigned long) hardfault_args[2]); 

 stacked_r3 = ((unsigned long) hardfault_args[3]); 

 stacked_r12 = ((unsigned long) hardfault_args[4]); 

 /* When an abnormal interrupt occurs, the abnormal mode register R14 (LR register) is 

set as the address which the exception mode will return. */ 

 stacked_lr = ((unsigned long) hardfault_args[5]); 

 stacked_pc = ((unsigned long) hardfault_args[6]); 

 stacked_psr = ((unsigned long) hardfault_args[7]); 

  

 SHCSR = (*((volatile unsigned long *)(0xE000ED24))); // System Handler control and 

status register 

 MFSR = (*((volatile unsigned char *)(0xE000ED28))); // Memory management fault 

status register  

 BFSR = (*((volatile unsigned char *)(0xE000ED29))); // Bus fault status register 

 UFSR = (*((volatile unsigned short int *)(0xE000ED2A)));// Use fault status register 

 HFSR = (*((volatile unsigned long *)(0xE000ED2C))); // Hard fault status register 

 DFSR = (*((volatile unsigned long *)(0xE000ED30))); // Debug fault status register 

 MMAR = (*((volatile unsigned long *)(0xE000ED34))); // Memory management 

address register 

 BFAR = (*((volatile unsigned long *)(0xE000ED38))); // Bus fault address register 

 while (1); 
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}  

If a kernel error occurs after executing the program, the program runs to the last while (1). At 

this moment, the corresponding stack and fault register values are observed. stacked_lr is 

the value of PC before the fault occurs when the fault is interrupted. In the debugging state of 

MDK, if the value of stacked_lr is 0x1A002D08, enter "PC = 0x1A002D08" in the command 

window at the bottom left" will locate the code location where the error occurred 

2.3 description of the Cortex-M3 kernel error register 

According to the values of kernel error status register show as below, it is also possible to see 

what kernel error has occurred.  

Appendix: description of the Cortex-M3 kernel error register 
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3. Check hard fault error of Keil program through JLINK 

3.1 Tools used for troubleshooting 

Jlink, Segger (the upper computer of Jlink), Keil. 

3.2 Troubleshooting steps 

3.2.1 Generate map file and lst file using Keil 

The Map file is generated automatically by Keil and placed in the path of the engineering. It 

can indicate the location of each function and each variable. The lst file reflects the PC pointer 

of each function and each instruction. It is generated by USER command in Keil as shown in 

Figure 3-1. The map and LST files generated by Keil 

Figure 3-1. The map and LST files generated by Keil 

 

D:\Keil\ARM\ARMCC\bin\fromelf.exe  -c --output ./project.lst ./obj/project.axf 

D:\Keil\ARM\ARMCC\bin\fromelf.exe represents the path of fromelf.exe.  

./obj/project.axf represents the location of the AXF file. It may need to be adjusted according 

to the actual situation.  

3.2.2 Save the RAM when a problem occurs 

Use this function when a problem occurs. Don’t power off and connect to Jlink. Call the Jlink 

command in Segger to get the current information.  
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1. First, enter “USB” to let the Jlink connect to the device. Then enter “hatl” to stop the kernel.  

Figure 3-2. Input halt to stop the kernal 

 

2. Call “savebin ram.bin 0x20000000 0x2000” to save all the content in RAM. The saved items 

are present in the installation directory of the Segger.  

Figure 3-3. Save the RAM content 

 

3.2.3 Analysis problems 

1. Find the location of the stack through check the map file.  
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Figure 3-4. View the stack from the map file 

 

2. Open the saved bin file for analysis. Find which functions are called and which variables 

are used before the hardware interrupt.  

Figure 3-5. Analyze the BIN file 

 

Look up from the bottom of the stack to confirm the function pointer. Comparing the lst file 

one by one and analyzing them, you can generally know which function, which instruction, or 

which parameter caused the hardware interrupt error.  

The location of each variable can be knew through the map file. You can analyze the program 

logic by looking directly at the current status of the variables in the RAM. 

3.3 Usage method of Jlink Command 

f          Firmware info. Used to view the hardware version of Jlink.  
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Figure 3-6. f command 

 

h          halt. Used to stop the MCU kernel, the PC pointer or other special registers can 

be viewed.  

Figure 3-7. h command 

 

g          go. Used to activate the kernel that is halt. 

Sleep      Waits the given time (in milliseconds). Syntax: Sleep <delay> for delay 

s          Single step the target chip. Debug the code in single step. The halt can be 

execute first and then debugged in single step. 

Figure 3-8. s command 

 

st         Show hardware status. Display the current state of Jlink. 

Figure 3-9. st command 

 

hwinfo     Show hardware info. Display the hardware information of Jlink. 
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mem       Read memory. Syntax: mem  [<Zone>:]<Addr>, <NumBytes> (hex) 

mem8      Read  8-bit items. Syntax: mem8  [<Zone>:]<Addr>, <NumBytes> (hex) 

mem16     Read 16-bit items. Syntax: mem16 [<Zone>:]<Addr>, <NumItems> (hex) 

mem32     Read 32-bit items. Syntax: mem32 [<Zone>:]<Addr>, <NumItems> (hex) 

 Read instruction： 

Figure 3-10. Read instruction 

 

w1         Write  8-bit items. Syntax: w1 [<Zone>:]<Addr>, <Data> (hex) 

w2         Write 16-bit items. Syntax: w2 [<Zone>:]<Addr>, <Data> (hex) 

w4         Write 32-bit items. Syntax: w4 [<Zone>:]<Addr>, <Data> (hex) 

 Write instruction： 

Figure 3-11. Write instruction 

 

erase      Erase internal flash of selected device. Syntax: Erase 

Erase instruction, select the device first and then perform the erase. 
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Figure 3-12. Erase instruction 

 

loadfile   Load data file into target memory. 

             Syntax: loadfile <filename>, [<addr>] 

             Supported extensions: *.bin, *.mot, *.hex, *.srec 

             <addr> is needed for bin files only. // Used to download files. 

loadbin    Load *.bin file into target memory. 

             Syntax: loadbin <filename>, <addr> // Used to download bin files. 

savebin    Saves target memory into binary file. // Used to save bin files. 

             Syntax: savebin <filename>, <addr>, <NumBytes> 

SetPC      Set the PC to specified value. Syntax: SetPC <Addr> // Used to set the PC 

pointer. The program can start execute from a specified location. 
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4. Revision history 

Table 4-1. Revision history 

Revision No. Description Date 

1.0 Initial Release Apr.30, 2021 
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