

GigaDevice Semiconductor Inc.

Arm® Cortex®-M3 32-bit MCU

Application Note

AN028

AN028
Cortex-M3 kernel hardfault error debugging and locating method

2

Table of Contents

Table of Contents ... 2

List of Figures ... 3

1. The causes of Hard fault The causes of Hard fault .. 5

1.1 Common causes of hardware ... 5

1.2 Common causes of software .. 5

2. Debug location method of kernel HardFault .. 6

2.1 change the startup file of startup.s .. 6

2.2 hard_fault_handler_c function ... 6

2.3 description of the Cortex-M3 kernel error register .. 8

3. Check hard fault error of Keil program through JLINK .. 10

3.1 Tools used for troubleshooting.. 10

3.2 Troubleshooting steps .. 10

3.2.1 Generate map file and lst file using Keil .. 10

3.2.2 Save the RAM when a problem occurs ... 10

3.2.3 Analysis problems ... 11

3.3 Usage method of Jlink Command .. 12

4. Revision history .. 16

AN028
Cortex-M3 kernel hardfault error debugging and locating method

3

List of Figures

Figure 3-1. The map and LST files generated by Keil ... 10

Figure 3-2. Input halt to stop the kernal .. 11

Figure 3-3. Save the RAM content .. 11

Figure 3-4. View the stack from the map file ... 12

Figure 3-5. Analyze the BIN file ... 12

Figure 3-6. f command .. 13

Figure 3-7. h command ... 13

Figure 3-8. s command .. 13

Figure 3-9. st command .. 13

Figure 3-10. Read instruction .. 14

Figure 3-11. Write instruction .. 14

Figure 3-12. Erase instruction ... 15

AN028
Cortex-M3 kernel hardfault error debugging and locating method

4

List of Tables

Table 4-1. Revision history ... 16

AN028
Cortex-M3 kernel hardfault error debugging and locating method

5

1. The causes of Hard fault The causes of Hard fault

1.1 Common causes of hardware

 Power design error, resulting in device power supply instability.

 The quality of power supply is not very well, too much noise.

 The device is not grounded properly.

 For devices with Vcap pin, the handling is not proper.

 There is a strong interference source in the circuit, causing interference to the device.

1.2 Common causes of software

 Null pointer was used.

 The calculation of address offset is incorrect.

 Program error caused by array bound.

 The improper use of the dynamic memory, leading to access memory address has been

released.

 Visit to the local variable by address which has already invalidated.

Generally, the possibility of Hard Fault caused by hardware is low, most are caused by

software. Therefore, if the hardware interrupt error occurs, the error investigation will be

through software.

AN028
Cortex-M3 kernel hardfault error debugging and locating method

6

2. Debug location method of kernel HardFault

2.1 change the startup file of startup.s

First, change the startup file of startup.s, replace the HardFault_Handler code in the following

code.

HardFault_Handler\

 PROC

 IMPORT hard_fault_handler_c

 TST LR, #4

 ITE EQ

 MRSEQ R0, MSP

 MRSNE R0, PSP

 B hard_fault_handler_c

 ENDP

2.2 hard_fault_handler_c function

Then put the hard_fault_handler_c function in the code of the C file. The code shows as below.

void hard_fault_handler_c(unsigned int * hardfault_args)

{

 static unsigned int stacked_r0;

 static unsigned int stacked_r1;

 static unsigned int stacked_r2;

 static unsigned int stacked_r3;

 static unsigned int stacked_r12;

 static unsigned int stacked_lr;

 static unsigned int stacked_pc;

 static unsigned int stacked_psr;

 static unsigned int SHCSR;

 static unsigned char MFSR;

AN028
Cortex-M3 kernel hardfault error debugging and locating method

7

 static unsigned char BFSR;

 static unsigned short int UFSR;

 static unsigned int HFSR;

 static unsigned int DFSR;

 static unsigned int MMAR;

 static unsigned int BFAR;

 stacked_r0 = ((unsigned long) hardfault_args[0]);

 stacked_r1 = ((unsigned long) hardfault_args[1]);

 stacked_r2 = ((unsigned long) hardfault_args[2]);

 stacked_r3 = ((unsigned long) hardfault_args[3]);

 stacked_r12 = ((unsigned long) hardfault_args[4]);

 /* When an abnormal interrupt occurs, the abnormal mode register R14 (LR register) is

set as the address which the exception mode will return. */

 stacked_lr = ((unsigned long) hardfault_args[5]);

 stacked_pc = ((unsigned long) hardfault_args[6]);

 stacked_psr = ((unsigned long) hardfault_args[7]);

 SHCSR = (*((volatile unsigned long *)(0xE000ED24))); // System Handler control and

status register

 MFSR = (*((volatile unsigned char *)(0xE000ED28))); // Memory management fault

status register

 BFSR = (*((volatile unsigned char *)(0xE000ED29))); // Bus fault status register

 UFSR = (*((volatile unsigned short int *)(0xE000ED2A)));// Use fault status register

 HFSR = (*((volatile unsigned long *)(0xE000ED2C))); // Hard fault status register

 DFSR = (*((volatile unsigned long *)(0xE000ED30))); // Debug fault status register

 MMAR = (*((volatile unsigned long *)(0xE000ED34))); // Memory management

address register

 BFAR = (*((volatile unsigned long *)(0xE000ED38))); // Bus fault address register

 while (1);

AN028
Cortex-M3 kernel hardfault error debugging and locating method

8

}

If a kernel error occurs after executing the program, the program runs to the last while (1). At

this moment, the corresponding stack and fault register values are observed. stacked_lr is

the value of PC before the fault occurs when the fault is interrupted. In the debugging state of

MDK, if the value of stacked_lr is 0x1A002D08, enter "PC = 0x1A002D08" in the command

window at the bottom left" will locate the code location where the error occurred

2.3 description of the Cortex-M3 kernel error register

According to the values of kernel error status register show as below, it is also possible to see

what kernel error has occurred.

Appendix: description of the Cortex-M3 kernel error register

AN028
Cortex-M3 kernel hardfault error debugging and locating method

9

AN028
Cortex-M3 kernel hardfault error debugging and locating method

10

3. Check hard fault error of Keil program through JLINK

3.1 Tools used for troubleshooting

Jlink, Segger (the upper computer of Jlink), Keil.

3.2 Troubleshooting steps

3.2.1 Generate map file and lst file using Keil

The Map file is generated automatically by Keil and placed in the path of the engineering. It

can indicate the location of each function and each variable. The lst file reflects the PC pointer

of each function and each instruction. It is generated by USER command in Keil as shown in

Figure 3-1. The map and LST files generated by Keil

Figure 3-1. The map and LST files generated by Keil

D:\Keil\ARM\ARMCC\bin\fromelf.exe -c --output ./project.lst ./obj/project.axf

D:\Keil\ARM\ARMCC\bin\fromelf.exe represents the path of fromelf.exe.

./obj/project.axf represents the location of the AXF file. It may need to be adjusted according

to the actual situation.

3.2.2 Save the RAM when a problem occurs

Use this function when a problem occurs. Don’t power off and connect to Jlink. Call the Jlink

command in Segger to get the current information.

AN028
Cortex-M3 kernel hardfault error debugging and locating method

11

1. First, enter “USB” to let the Jlink connect to the device. Then enter “hatl” to stop the kernel.

Figure 3-2. Input halt to stop the kernal

2. Call “savebin ram.bin 0x20000000 0x2000” to save all the content in RAM. The saved items

are present in the installation directory of the Segger.

Figure 3-3. Save the RAM content

3.2.3 Analysis problems

1. Find the location of the stack through check the map file.

AN028
Cortex-M3 kernel hardfault error debugging and locating method

12

Figure 3-4. View the stack from the map file

2. Open the saved bin file for analysis. Find which functions are called and which variables

are used before the hardware interrupt.

Figure 3-5. Analyze the BIN file

Look up from the bottom of the stack to confirm the function pointer. Comparing the lst file

one by one and analyzing them, you can generally know which function, which instruction, or

which parameter caused the hardware interrupt error.

The location of each variable can be knew through the map file. You can analyze the program

logic by looking directly at the current status of the variables in the RAM.

3.3 Usage method of Jlink Command

f Firmware info. Used to view the hardware version of Jlink.

AN028
Cortex-M3 kernel hardfault error debugging and locating method

13

Figure 3-6. f command

h halt. Used to stop the MCU kernel, the PC pointer or other special registers can

be viewed.

Figure 3-7. h command

g go. Used to activate the kernel that is halt.

Sleep Waits the given time (in milliseconds). Syntax: Sleep <delay> for delay

s Single step the target chip. Debug the code in single step. The halt can be

execute first and then debugged in single step.

Figure 3-8. s command

st Show hardware status. Display the current state of Jlink.

Figure 3-9. st command

hwinfo Show hardware info. Display the hardware information of Jlink.

AN028
Cortex-M3 kernel hardfault error debugging and locating method

14

mem Read memory. Syntax: mem [<Zone>:]<Addr>, <NumBytes> (hex)

mem8 Read 8-bit items. Syntax: mem8 [<Zone>:]<Addr>, <NumBytes> (hex)

mem16 Read 16-bit items. Syntax: mem16 [<Zone>:]<Addr>, <NumItems> (hex)

mem32 Read 32-bit items. Syntax: mem32 [<Zone>:]<Addr>, <NumItems> (hex)

 Read instruction：

Figure 3-10. Read instruction

w1 Write 8-bit items. Syntax: w1 [<Zone>:]<Addr>, <Data> (hex)

w2 Write 16-bit items. Syntax: w2 [<Zone>:]<Addr>, <Data> (hex)

w4 Write 32-bit items. Syntax: w4 [<Zone>:]<Addr>, <Data> (hex)

 Write instruction：

Figure 3-11. Write instruction

erase Erase internal flash of selected device. Syntax: Erase

Erase instruction, select the device first and then perform the erase.

AN028
Cortex-M3 kernel hardfault error debugging and locating method

15

Figure 3-12. Erase instruction

loadfile Load data file into target memory.

 Syntax: loadfile <filename>, [<addr>]

 Supported extensions: *.bin, *.mot, *.hex, *.srec

 <addr> is needed for bin files only. // Used to download files.

loadbin Load *.bin file into target memory.

 Syntax: loadbin <filename>, <addr> // Used to download bin files.

savebin Saves target memory into binary file. // Used to save bin files.

 Syntax: savebin <filename>, <addr>, <NumBytes>

SetPC Set the PC to specified value. Syntax: SetPC <Addr> // Used to set the PC

pointer. The program can start execute from a specified location.

AN028
Cortex-M3 kernel hardfault error debugging and locating method

16

4. Revision history

Table 4-1. Revision history

Revision No. Description Date

1.0 Initial Release Apr.30, 2021

AN028
Cortex-M3 kernel hardfault error debugging and locating method

17

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any

product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and

treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and

treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and

brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability

arising out of the application or use of any Product described in this document. Any information provided in this document is provided

only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality

and safety of any application made of this information and any resulting product. Except for customized products which has been

expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business,

industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components

in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control

instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments,

life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution

control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury,

death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling

the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers

shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising

from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it’s suppliers

and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or

death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes,

corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2021 GigaDevice – All rights reserved

	Table of Contents
	List of Figures
	List of Tables
	1. The causes of Hard fault The causes of Hard fault
	1.1 Common causes of hardware
	1.2 Common causes of software

	2. Debug location method of kernel HardFault
	2.1 change the startup file of startup.s
	2.2 hard_fault_handler_c function
	2.3 description of the Cortex-M3 kernel error register

	3. Check hard fault error of Keil program through JLINK
	3.1 Tools used for troubleshooting
	3.2 Troubleshooting steps
	3.2.1 Generate map file and lst file using Keil
	3.2.2 Save the RAM when a problem occurs
	3.2.3 Analysis problems

	3.3 Usage method of Jlink Command

	4. Revision history

