GigaDevice Semiconductor Inc.

Arm® Cortex®- M3/M4/M23/M33 32-bit MCU

Application Note
ANO035

e ANO035

GigaDevice Boot from SRAM

Table of Contents

TaDIE OF CONTENTS ...t e e e e e 2
LiSt Of FIQUIESooeeiii e e e e e e 3
LiSt Of TADIES ... 4
1. INtrodUCTION 5
2. Boot from SRAM ... 6

2.1. Hardware configurationcccci 6

2.2. Configuration steps in Keilccccii 6
3. Demonstration in debug mode................ccoooiiiii i, 1
4. ReVISION NISTOrYcoooi i 12

©

GigaDevice

ANO035
Boot from SRAM

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 3-1.
Figure 3-2.

List of Figures

SchematiC Of BOOT PIiNS.....uiiiiiiiiiieiiiiii ettt eenb e e e 6
Configuration of IROM1 and IRAML @ddreSSccoiuiiiiiiiiiieiiiie e 6
Add the global macro “VECT_TAB_SRAM”ooo e 7
SeleCt the Erase MOUE........uiiiii e 9
Configure the algorithm @ddrEeSSueiii i 9
Use SPACE to apply emMpty MEMOTY ...ooviiiiiiiii ettt 10
Realocate the address of Reset_Handler................ccciiiiiiii s 10
Remove “Run t0 Main()”ocoiiiiiiiiiii e 1
DEebUQG the PrOgIraM . ..ot e e s rnneeas 1

G ANO035
Boot from SRAM

GigaDevice

List of Tables

LIz o] (=T O A = Yo To) A 4 o o L= PP PPPRT 5
Table 2-1. Add the code related to the macro " VECT_TAB_SRAMccccciiiiiiiiiiiiiieeniiiieeeeeen 7
Table 4-1. ReViSion hiStOry.............c.cooiiiiiiiii e 12

©

GigaDevice

ANO035
Boot from SRAM

1.

Introduction

The GD32F10x devices provide three kinds of boot sources which can be selected by the
BOOTO and BOOT1 pins. The details are shown in Table 1-1. Boot modes. The value on
the two pins is latched on the 4th rising edge of CK_SYS after a reset. It is up to the user to
set the BOOTO and BOOT1 pins after a power-on reset or a system reset to select the
required boot source. Once the two pins have been sampled, they are free and can be used
for other purposes.

Table 1-1. Boot modes

Boot mode selection pins
Selected boot source
Bootl Boot0
Main Flash Memory X 0
Boot loader 0 1
On-chip SRAM 1 1

Note: When the boot source is hoped to be set as “Main Flash Memory”, the BootO pin has
to be connected with GND definitely and can not be floating.

After power-on sequence or a system reset, the Arm® Cortex®-M3/M4/M23/M33 processor
fetches the top-of-stack value from address 0x0000 0000 and the base address of boot code
from 0x0000 0004 in sequence. Then, it starts executing code from the base address of boot
code.

Due to the selected boot source, either the main flash memory (original memory space
beginning at 0x0800 0000) or the system memory (original memory space beginning at
Ox1FFF FOO0O) is aliased in the boot memory space which begins at the address 0x0000 0000.
When the on-chip SRAM whose memory space is beginning at 0x2000 0000 is selected as
the boot source, in the application initialization code, you have to relocate the vector table in
SRAM using the NVIC exception table and offset register.

The embedded boot loader is located in the System memory, which is used to reprogram the
Flash memory.

c ANO035
Boot from SRAM

GigaDevice

2. Boot from SRAM

2.1. Hardware configuration

When boot from SRAM, the level of BOOT0O and BOOT1 must be configured as high, as is
shown in Table 1-1. Boot modes. When designing the circuit, a jumper cap is usually used
to switch the high and low levels of boot pins, as is shown in Eigure 2-1. Schematic of BOOT

pins.

Figure 2-1. Schematic of BOOT pins

TP2
g ||'GNI,R4_, BOOTO
1 —+3V3 10KQ

BOOTO

JP3
. |I: R PB2
2 1
1 —+3v3 10KQ

BOOTI

2.2. Configuration steps in Keil

1. Configure IROM1 and IRAM1 as SRAM address in “Option for Target -> Target”, as is
shown in Figure 2-2. Configuration of IROM1 and IRAM1 address.

Figure 2-2. Configuration of IROM1 and IRAM1 address
[V,

Tevice Target]Dutput] Listing] User 1 C/T++] A=m] Linker 1 Debug] Utilities]

GigaDevice GD32F107VC
Code Generation
Ytal (MHz): |25.0

Operating system: |None j ™ Use Cross-Module Optimization

System-Viewer File {.Sfr): ¥ Use MicroLIB r

[GD32F 10« CLSFR J

I™ Use Custom SVD File

Read/Only Memory Areas Read/Write Memary Areas
default offchip Start Size Startup default offchip Start Size Maolnit

I ROM1: L r RAM1 r~
r ROMZ: r r~ RAMZ: r
r ROM3: r r~ RAM3; r

onchio on-chip
p[IROM1: |0x20000000 010000 l(: | irams. [p2o0i0000 [paoo0 |

<

71

I~ IROMZ: e IRAMZ r

OE | el | Dol | Help

2. Use the NVIC exception table and offset register to realocate the vector table to SRAM.
Add the global macro “VECT_TAB_SRAM?” to “Option for Target -> c/c++ -> Define”, as
is shown in Figure 2-3. Add the global macro “VECT TAB SRAM”.

c ANO035

GigaDevice Boot from SRAM
Figure 2-3. Add the global macro “VECT_TAB_SRAM”
(V.
Device | Target | Dutput | Listing| User C/0+ |Asm | Lisker | Debug | Utilities |

Preprocessor Symbols

Define: |USE_STDF‘EH\PH_DHIVEH.GDEZF'IHX_CLIVECT_T}\E_SHAM I
Undefine: |

Language / Code Generation

[~ Stict ANSIC e
Optimization: ’W‘ I~ Enum Container always int All Wamings hd
™ Optimize for Time ™ Plain Charis Signed r
I~ Spit Load and Store Multiple ™ Read-Only Position Independent ™ Mo Auto Includes
¥ One ELF Section per Function ™ Read-Write Position Independent ™ C99 Mode

Include:

Faths

Misc |
Controls

|..\. Firmware\GD32F 10k _standard_peripheralInclude;..\..\Firmware\CMSIS4GDYGD32F 1 B \Include J

Compiler |-¢ —cpu Cortex-M3 -D__MICROLIB -g -00 —apcs=interwork —split_sections -1\ \Fimware

control |vGD32F10x_standard_peripheralinclude 1.\ .\Fimware\CMSIS4GDNGD32F 10 Include -1..\.
string

0 | Cancel | Defaults | Help

Add the code related to the macro " VECT_TAB_SRAM " in the SystemlInit() function, as is
shown in Table 2-1. Add the code related to the macro " VECT TAB SRAM.

Table 2-1. Add the code related to the macro " VECT_TAB_SRAM

Al
\brief setup the microcontroller system, initialize the system
\param[in] none
\param[out] none
\retval none
*/
void Systemlnit(void)
{

* reset the RCU clock configuration to the default reset state */

/[* enable IRC8M */

RCU_CTL |= RCU_CTL_IRC8MEN;

I* reset SCS, AHBPSC, APB1PSC, APB2PSC, ADCPSC, CKOUTOSEL bits */

RCU_CFGO0 &= ~(RCU_CFGO_SCS | RCU_CFGO_AHBPSC | RCU_CFGO_APB1PSC |
RCU_CFGO0_APB2PSC |

RCU_CFGO0_ADCPSC | RCU_CFGO0_ADCPSC_2 |

RCU_CFG0_CKOUTOSEL);

/* reset HXTALEN, CKMEN, PLLEN bits */

RCU_CTL &= ~(RCU_CTL_HXTALEN | RCU_CTL_CKMEN | RCU_CTL_PLLEN);
I* Reset HXTALBPS bit */

RCU_CTL &= ~(RCU_CTL_HXTALBPS);
/* reset PLLSEL, PREDVO_LSB, PLLMF, USBFSPSC bits */
#ifdef GD32F10X_CL
RCU_CFGO &= ~(RCU_CFGO_PLLSEL | RCU_CFGO0_PREDVO0_LSB | RCU_CFGO_PLLMF |
RCU_CFGO_USBFSPSC | RCU_CFGO_PLLMF_4);

GigaDevice

ANO035
Boot from SRAM

RCU_CFG1 = 0x00000000U;
f#else
RCU_CFGO0 &= ~(RCU_CFGO_PLLSEL | RCU_CFG0_PREDVO0 | RCU_CFGO_PLLMF |
RCU_CFGO0_USBDPSC | RCU_CFGO_PLLMF_4);
#endif /* GD32F10X_CL */

#if (defined(GD32F10X_MD) || defined(GD32F10X_HD) || defined(GD32F10X_XD))
/* reset HXTALEN, CKMEN and PLLEN bits */
RCU_CTL &= ~(RCU_CTL_PLLEN | RCU_CTL_CKMEN | RCU_CTL_HXTALEN);
/* disable all interrupts */
RCU_INT = 0x009F0000U;
#elif defined(GD32F10X_CL)
I* Reset HXTALEN, CKMEN, PLLEN, PLL1EN and PLL2EN bits */
RCU_CTL &= ~(RCU_CTL_PLLEN | RCU_CTL_PLL1EN | RCU_CTL_PLL2EN |
RCU_CTL_CKMEN | RCU_CTL_HXTALEN);
/* disable all interrupts */
RCU_INT = 0x00FF0000U;
#endif

/* Configure the System clock source, PLL Multiplier, AHB/APBXx prescalers and Flash settings */
system_clock_config();
#ifdef VECT_TAB_SRAM
nvic_vector_table_set(NVIC_VECTTAB_RAM,VECT_TAB_OFFSET);
else
nvic_vector_table_set(NVIC_VECTTAB_FLASH,VECT_TAB_OFFSET);
#endif

}

3. Configure the erase mode as “Do not Erase” in “Option for Target -> Debug -> Setting ->
Flash Download”, as is shown in Figure 2-4. Select the erase mode.

c ANO035
Boot from SRAM

GigaDevice

Figure 2-4. Select the erase mode

Debug l Trace Flash Download l

Download Function RAM for Algorithm

LOAD " Erase Full Chip ¥ Program
-‘i " Erase Sectors W Verify Start: |U’X20001000 Size: |Ox0800

*+ Do not Erase] ¥ Reset and Run

Programming Algorithm

Description | Device Size Device Type Address Range
20000000H - 20000FFFH

GD32F10x Connectivity lin... ™ On-chip Flash

Start: |Ox20000000 Size: (000001000

Add ‘ Remove ‘

4. Configure the algorithm address as SRAM address in “Option for Target -> Debug ->
Setting -> Flash Download”, as is shown in Eigure 2-5. Configure the algorithm

address.

Figure 2-5. Configure the algorithm address

Debug l Trace Flash Download l

Download Function RAM for Algorithm

LOAD " Erase Full Chip ¥ Program
Fd Erasesectors W Verify Start: [0x20001000 Size: [0x0800
* Do not Erase ¥ Reset and Run

Programming Algorithm

Description Device Size Device Type | Address Range |
GD32F10x Connectivity lin... ™ On-chip Flash I 20000000H - 20000FFFH I

Start: |Ox20000000 Size: | 000001000

Add ‘ Remave ‘

5. Before Reset_Handler in the startup file (such as startup_gd32f10x_cl.s), use SPACE to
apply for a section of empty memory, as is shown in Figure 2-6. Use SPACE to apply

empty memory. So as to locate the Reset_Handler at address 0x200001EQ, as is
shown in Figure 2-7. Realocate the address of Reset Handler.

©

GigaDevice

ANO035

Boot from SRAM

Figure 2-6. Use SPACE to apply empty memory

Skip Mem I SPACE ox7C Qo

DT URFIEQOF85F
| Vectors_End
| Vectors_Size EQT _ WVectors_End - _ Vectors

LAREL | .text|, CODE, RERDONLY
;/* reset Handler *,;
Reset Handler BROC

EXPORT Reset Handler [WEAK]

IMPORT main

IMPCRT SystemInit

LDR R0, =5ystemInit

BLX R

LDR RO, = main

BX R

ENDE
Figure 2-7. Realocate the address of Reset_Handler
_rt final cpp O0x2000014d Thumb Code a

rt final exitc Qx200001dd Thumkx Code 1}

JBeset Handler 0x200001el | Thumb Code 8
ADLU 1 TRUHandler UxZ00001TE Thuml Code 0
CANO_EWMC TRQHandler Ox200001fk Thuml Code a
CANO_EBX0_ IRQHandler Ox200001fk Thumk Code a
CANO EX1 TIRQHandler Ox200001fk Thuml Code 1]
CAN0O TX IRQHandler Ox200001fk Thumk Code [u]

10

GigaDevice

ANO035
Boot from SRAM

3.

Demonstration in debug mode

Remove “Run to main()” in “Option for Target -> Debug”, as is shown in Eigure 3-1. Remove

“Run to main()”.

Figure 3-1. Remove “Run to main()”

(V.

™ Use Simulator
[Limit Speed to Real-Time

[+ Load Application at Startup

Initialization File:

¥ Run to main{

ol e |

Restore Debug Session Settings
W Breakpoints W Toolbox
W Watch Windows & Peformance Analyzer

W Memary Display W System Viewer

Device] Target] Output I Listing] User] CAC++ I hzm

Settings || @ Use: [J-LINK / J-TRACE Cortex

] Linker Debug

Utilities |

j Settings

¥ Load Application at Startup

™ Run to main{)

Initialization File:

Restore Debug Session Settings
¥ Breakpoints V¥ Toolbox
v Watch Windows
V¥ Memory Display

V¥ System Viewer

ol ea |

CPUDLL: Parameter: Driver DLL: Parameter:
|SAHMCM3.DLL |-F{EM}\P |SAHMCM3.DLL |
Dialog DLL: Parameter: Dialog DLL: Parameter:
|DCI'u'I.DLL |-pCM3 |TCM.DLL |1;cru13
0K | Cancel | Defaults | Help

Enter the debug mode, the program starts running at the address 0x200001EO.

Figure 3-2. Debug the program

0x2000010E 2001 DCW 0x2001
170: LDR R0, =SystemInit
E:0x200001E0 4806 LDR rad, [pc,#24] ; @0x200001FC
171: BLX RO
Ox200001EZ 4780 BLX ra
172: LDR R0, = main
Mo_AAAAATIT A EXL T T T p—_ r—— fman MDA Aamnnmonn
£
system_gd32f10w.c main.c startup_gd32f10x_cl.s D Project.map
165 ;/* reset Handler *;
166 Reset_ Handler FROC
1&7 EXPCRT Reset_ Handler
168 IMPORT _ main
169 IMPORT SystemInitc
B 170 LDR R0, =SystemInit
171 BLX RO
172 LDR ED, = main
173 BX RO
174 ENDP

So far, boot from SRAM is successfully. As long as the power is not cut off, the program can

run after reset.

11

e ANO35
GigaDevice Boot from SRAM
4. Revision history
Table 4-1. Revision history
Revision No. Description Date
1.0 Initial Release Nov.01, 2021

12

c ANO035

GigaDevice Boot from SRAM

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any
product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and
treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and
treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and

brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability
arising out of the application or use of any Product described in this document. Any information provided in this document is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality
and safety of any application made of this information and any resulting product. Except for customized products which has been
expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business,
industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components
in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control
instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments,
life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution
control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury,
death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling
the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers
shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising
from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers
and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or

death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes,

corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2021 GigaDevice — All rights reserved

13

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Boot from SRAM
	2.1. Hardware configuration
	2.2. Configuration steps in Keil

	3. Demonstration in debug mode
	4. Revision history

