

GigaDevice Semiconductor Inc.

GD30WS8815x PMIC for TWS Headset Charging Box

Datasheet

Table of Contents

Та	ble o	of Contents	2
Li	st of	f Figures	5
Li	st of	f Tables	6
1	Fea	eatures	7
2	Ар	oplications	7
3	Ge	eneral description	8
4	De	evice overview	9
4	4.1	Device information	9
4	4.2	Block diagram	9
4	4.3	Pinout and pin assignment	10
4	4.4	Pin definitions	
5	Fu	Inctional description	12
ļ	5.1	Operation modes	
Į	5.2	Battery charging	12
-	5.2.		
	5.2.		
Į	5.3	Synchronous boost converter	14
ļ	5.4	Power path management	15
	5.4.		
	5.4.	I.2 LDO	15
ļ	5.5	Earbud detection	16
ļ	5.6	NTC battery temperature	16
ļ	5.7	LED driver	17
	5.7.	7.1 LED connection and display mode	17
	5.7.	2.2 LED Display Mode Configuration	19
	5.7.	7.3 LED Driving Capability Configuration	20
	5.7.	7.4 LED Display Control by I2C	20
ł	5.8	Earbud communication	20
ł	5.9	EN and IRQ	21
ļ	5.10	Over temperature protection	22
į	5.11	I2C interface	22

	5.12	ADC description	23
	5.13	Register Map2	23
	5.13.	1 Fault Register 2	23
	5.13.2	2 Status Register 1 2	25
	5.13.3	3 Status Register 2 2	26
	5.13.4	4 Control Register 2	27
	5.13.	5 User configure Register 1 2	28
	5.13.0	6 User configure Register 2 2	28
	5.13.	7 User configure Register 3 2	29
	5.13.8	5 5	
	5.13.9	9 COML/R Register 3	30
	5.13.	10 LED Register 3	31
	5.13.	11 ADC Register 3	32
	5.13.	12 DEBUG Register	32
6	Elec	trical characteristics	4
	6.1	Absolute maximum ratings3	34
	6.2 I	Recommended operation conditions	34
		Electrical sensitivity	
		Power supplies voltages and currents3	
	6.5 I	Logic input characteristics	5
	6.6	Open drain outputs characteristics3	5
	6.7 I	NTC characteristics3	5
	6.8	Switching charger characteristics3	6
	6.9 I	Boost converter characteristics3	57
	6.10	ADC characteristics	8
	6.11	Timing characteristics3	9
	6.12	Earbud Output Switch characteristics3	;9
	6.13	I2C characteristics	;9
	6.14	Protection features	0
7	Τνρί	cal application circuit4	2
8		out guideline	
9		kage information	
		-	
		QFN24 package information4	
1	9.2	Thermal characteristics4	6
10) Or	dering information4	7

GD30WS8815x Datashee	et
----------------------	----

List of Figures

Figure 4-1 Block diagram for GD30WS8815x	. 9
Figure 4-2 GD30WS8815x QFN24 pinouts	10
Figure 5-1 Operation modes	12
Figure 5-2 Battery charge state diagram	13
Figure 5-3 Battery charge cycle and charge parameters	14
Figure 5-4 The principle diagram for LDO	
Figure 5-5 Diagram for the NTC circuit	16
Figure 5-6 1-LED Mode	17
Figure 5-7 2-LED Mode	
Figure 5-8 3-LED Mode	18
Figure 5-9 4-LED Mode	19
Figure 5-10 The communication block diagram of COML and EBL	21
Figure 5-11 I2C communication flow	22
Figure 6-1. Constant current charging efficiency	36
Figure 6-2. Constant current charging chip case temperature	37
Figure 6-3. BOOST conversion efficiency	
Figure 6-4. I2C bus timing diagram	39
Figure 7-1 Typical GD30WS8815x application circuit	42
Figure 8-1 Typical GD30WS8815x layout guideline	43
Figure 9-1 QFN24 package outline	44
Figure 9-2 QFN24 recommended footprint	45

List of Tables

Table 4-1 Device information for GD30WS8815x
Table 4-2. GD30WS8815x QFN24 pin definitions10
Table 5-1 Description of resistors for the NTC circuit
Table 5-2 1-LED Display Mode 17
Table 5-3 2-LED Display Mode 18
Table 5-4 3-LED Display Mode
Table 5-5 4-LED Display Mode 19
Table 5-6 LED Display Mode Register
Table 5-7 LED Driving Register
Table 5-8 LED Control Register
Table 6-1 Absolute maximum ratings
Table 6-2 Recommended operation conditions
Table 6-3 Electrostatic Discharge characteristics
Table 6-4 Power supplies voltages and currents
Table 6-5 Logic input characteristics 35
Table 6-6 Open drain output characteristics 35
Table 6-7 NTC characteristics 35
Table 6-8 Charger characteristics 36
Table 6-9 Boost converter characteristics 37
Table 6-10 ADC characteristics 38
Table 6-11 Timing characteristics 39
Table 6-12 Earbud output switch characteristics 39
Table 6-13 I2C characteristics 39
Table 6-14 Protection features characteristics 40
Table 9-1. QFN24 dimensions 44
Table 9-2. Package thermal characteristics ⁽¹⁾
Table 10-1 Part ordering code for GD30WS8815x devices
Table 11-1 Revision history 48

1 Features

- Extreme low quiescent current, <5uA in sleep mode
- Charging features
 - Switching charging up to 1.5A maximum current programmable through ISET
 - Full charge cycle: pre-charge, constant current/constant voltage, trickle charge
 - Charging current and trickle charging current are all programmable through I2C
 - Support variety of battery chemistries, 4.1/4.2/4.3/4.35/4.4V @0.5%
- Boost converter
 - Support up to 1 A load current
 - High efficiency synchronous boost converter @95%
 - Output current limit programmable through I2C, 1.6A/1.8A/2.0A/2.2A
- Power path management
 - Power path management allows simultaneous battery charging and system supply, system discharge priority
 - When the system load increases, the charging current is reduced dynamically according to the input current and system voltage
 - USB current limit programmable through I2C, -5%/0%/5%/10% @I_{CCCH} + 0.5A (Maximum current 3A)
 - Over voltage protection up to 5.6V, V_{SYS} voltage regulation limit: 4.6V
- Protection features
 - Short Circuit Protection Input
 - Over Voltage/Current Protection
 - Over/Under temperature protection
 - Boost Over voltage (OV) during charge @5.5V
 - Boost Under voltage (UV) when charge/discharge @4.3V
- Additional features
 - 3.3V LDO support 80mA
 - Programmable LED driver
 - Low external component count
 - Simple I²C compatible interface

Applications

2

- TWS earbuds charging case
- Headsets and hearing aids
- Low battery applications such as smart watches and fitness accessories
- Patient monitors and portable medical equipment

3 General description

The GD30WS8815x is a highly integrated, programmable, low quiescent current power management integrated circuit (PMIC) that integrates the most common needs for wearables and low power battery applications.

The GD30WS8815x integrates a switching charger of programmable charging current (up to 1.5A) and a synchronous boost converter at fixed 5V output. The IC also includes a 12-bit ADC for battery gauge monitoring, and a low quiescent current, low noise LDO capable of delivering 80mA load current.

The device integrates advanced power path management and control that allow the device to provide power to the system while charging the battery even with poor adapters. The dynamic power path management automatically balances the currents delivered to the system and battery charging. A high voltage and over current protection circuit is implemented in the IC to protect it from high input voltage as high as 20V.

The GD30WS8815x device supports charge current up to 1.5A and termination current down to 5mA. The maximum charge current is set at a default of 1.5A and is programmable by connecting an external resistor from ISET pin to ground. The battery is charged using a standard Li-lon charge profile with three phases: pre-charge, constant current and constant voltage regulation.

The device has several power saving modes to increase battery life whether the product is in storage or in operation. The quiescent current could be as low as 5uA when it is in sleep mode and thus most battery could sustain more than a year in shelf.

The versatile features of GD30WS8815x allow for it to best used in wearable applications such as headsets, earbuds and hearing aids, or low battery applications such as smart watches and fitness accessories, or patient monitors and portable medical equipment.

4 Device overview

4.1 Device information

Table 4-1 Device information for GD30WS8815x

Part Order Code	de Package Function		Description	
GD30WS8815EU	U QFN24 MCU version	Cooperate with MCU solution,		
GD30W38815E0		supports EN enable control		

4.2 Block diagram

4.3 Pinout and pin assignment

Figure 4-2 GD30WS8815x QFN24 pinouts

4.4 Pin definitions

Pin Name	Pins	Pin Type	Functions description	
VBAT	1	Р	Connect to positive node of a battery.	
VCC	2	Р	LDO output voltage, connect a capacitor to ground.	
AGND	3	G	Ground.	
EBR	4	I/O	Positive terminal for right earbud.	
EBL	5	I/O	Positive terminal for left earbud.	
IOFF	6	I	Set the termination current for BOOST.	
AGND	7	G	Ground.	
LED1	8	0	LED driver #1 for battery gauge monitor or other.	
LED2	9	0	LED driver #2 for battery gauge monitor or other.	
LED3	10	0	LED driver #3 for battery gauge monitor or other.	
ISET	11	I	Set the charge current by connecting a resistor to ground.	
NTC	12	I	Thermistor terminal voltage for battery, or pull high to DISABLE the IC.	
VUSB	13,14	Р	Power input from USB or 5V voltage source.	

VSYS	15,16	Р	Output of boost converter or system voltage.	
SW	17,18	Ρ	Switching node, connecting to VBAT by an inductor.	
COMR	19	I/O	Right earbud communication input and output.	
COML	20	I/O	Left earbud communication input and output.	
SCL	21	I	I2C communication to the host controller, clock.	
SDA	22	I/O	I2C communication to the host controller, data.	
IRQ	23	0	Interrupt output.	
EN	24	I	IC enable.	
PGND	EPAD	G	Device power ground.	

Notes:

1. Type: I = input, O = output, I/O = input or output, P = power, G = Ground.

5 Functional description

5.1 Operation modes

The GD30WS8815x IC has three different operation modes: Sleep, Battery and USB operation mode, as shown in Figure 5-1.

Figure 5-1 Operation modes

5.2 Battery charging

5.2.1 Battery charger state

The GD30WS8815x device integrates a switching charger that allows the battery to be charged with a programmable charge current up to 1.5A. In addition to the charge current, other charging parameters can be also programmed through I2C such as the battery regulation voltage, pre-charge current. The device supports multiple battery regulation voltage regulation settings (V_{CVCH}) and charge current (I_{CCCH}) options to support multiple battery chemistries for single-cell applications. A full one-cell charger state diagram as shown in Figure 5-2 is implemented in the IC.

Figure 5-2 Battery charge state diagram

5.2.2 Charge parameters

The maximum charge current is programmed by a resistor connected from the ISET pin to ground. The resistor value can be calculated as:

$$R_{CCCH} = \frac{10}{I_{CCCH}} k\Omega$$
$$I_{PCH} = \frac{I_{CCCH}}{10}$$
$$R_{IOFF} = \frac{500}{I_{IOFF}} k\Omega$$

Where the unit of I_{CCCH} is A, the unit of I_{IOFF} is mA. The charge current also varies in different charging stages constant current loop (CC), constant voltage loop (CV). During the charging process, all control loops are enabled and the one that is dominant takes control regulating the charge current as needed. The relevant charge parameters and control loops are defined as in Figure 5-3.

The charger input has back to back blocking FETs to prevent reverse current flow from VBAT to VUSB. They also integrate control circuitry regulating the input current and prevents excessive currents from being drawn from the USB power supply for more reliable operation.

5.3 Synchronous boost converter

The integrated synchronous boost converter is a wide input range, high-efficiency, DC-to-DC step-up switching regulator. It is capable of delivering up to 3W of output power, integrated with a 150m Ω high side PMOS and a 150m Ω low side NMOS. It uses a PWM current-mode control scheme. An error amplifier integrates error between the internal feedback signal proportional to VSYS and the internal reference voltage. The output of the integrator is then compared to the sum of a current-sense signal and the slope compensation ramp. This operation generates a PWM signal that modulates the duty cycle of the power MOSFETs to achieve regulation for output voltage.

Integrated VBAT to VSYS synchronous boost output function, the output voltage is 5V, which can be set to 4.8V ~ 5.15V by I2C. The boost module integrates the current limiting function. When the load current is too large, the chip enters the cycle-by-cycle current limiting mode, limiting the peak inductor current to 2.0A, which can be configured to 1.6A/1.8A/2.0A/2.2A by I2C. At the same time, the output voltage starts to drop. When the output voltage drops to 4.3V, the short-circuit protection is triggered.

The boost module also integrates an overvoltage protection function. When the output voltage is higher than 5.5V, the overvoltage protection is triggered. When the voltage of the boost module drops below 2.8V during the working process of the booster module, the boost module is automatically closed and locked in the under voltage lockout state.

The boost regulator provides excellent stability over a wide range of output current and operates in DCM at light loads for excellent efficiency. The switching frequency is fixed at 1MHz to reduce the external inductor size. The boost regulator is disabled when USB voltage is detected to save power.

5.4 Power path management

5.4.1 Power path management

The device integrates advanced power path management and control that allows the device to provide power to the system while charging the battery even with low power adapters. The dynamic power path management is able to automatically balance the currents delivered to the system and battery charging.

The charging current can be set to I_{CCCH} through the off-chip resistor connected to the ISET pin, and the chip input current is limited to I_{CCCH} +0.5A by the input current limit switch. In the charging and discharging mode, the system discharge priority. There are two situations that will cause the charging current to drop.

- 1) When the discharge current plus the rated charging is higher than I_{CCCH} +0.5A, the dynamic path management loop automatically reduces the charging current to meet the discharge demand.
- 2) When the power supply capacity of the input adapter is lower than I_{CCCH}+0.5A, and the rated charging current plus the VSYS discharge current is greater than the power supply capacity of the adapter, the VSYS voltage will drop, as the VSYS voltage drops to 4.6V, the charging current will be reduced through the feedback loop.

The chip also integrates the charging current temperature modulation function, when the chip temperature exceeds 110 degrees Celsius, the charging current is automatically reduced.

The input current limit switch also integrates short-circuit protection and over-current protection. When the current in the input switch exceeds 3A, the over-current protection is triggered. When the VSYS voltage drops below 4V, the short-circuit protection is triggered, the system stops working, and the input switch is closed. The chip enters hiccup mode and restarts every 250ms to check whether the abnormality exists. If the abnormality is removed, the chip returns to normal operation

5.4.2 LDO

A linear regulator is integrated to supply part of the chip and external circuits or MCU.

Output voltage of the LDO is 3.3V and the output driving current is 80mA.When output current exceeds 80mA, the output value will drop. When the chip works in sleep mode, LDO will enter low power mode to save power, which provides 10mA driving capability.

Figure 5-4 The principle diagram for LDO

5.5 Earbud detection

The circuit detects the output current from EBL/EBR to show that earbud is inserted. EBL and EBR are independent channels which detect earbuds individually.

5.6 NTC battery temperature

The GD30WS8815x chip integrates an NTC battery temperature protection circuit, which provides the over-temperature protection of high temperature 55°C and low temperature -10°C. The corresponding high and low temperature threshold voltages are respectively 30% and 60% of the input system voltage. When the battery temperature exceeds 55°C or fall below -10°C, the correlative high or low temperature output will be set high separately. If NTC pin is pulled down to GND, the NTC function is closed.

Figure 5-5 Diagram for the NTC circuit

Table 5-1 Description of resistors for the NTC circuit

Symbol	Parameter	Typical value	Unit
RNTC	NTC thermistor	10	KΩ
R _{T1}	Resistor for voltage division	5.23	KΩ
R _{T2}	Resistor for voltage division	9.31	KΩ

5.7 LED driver

The chip supports 1-4 LED mode (see Table 5-2 to Table 5-5). The GD30WS8815x supports LED control by I2C (see Table 5-6toTable 5-8).

5.7.1 LED connection and display mode

Figure 5-6 1-LED Mode

Table 5-2 1-LED Display Mode

Mode	Battery Status	DLED1
Charge	Full	Always On
Charge	Charging	Blink at 1Hz
Discharge	Normal Power	On for 8s
Discharge	Low Battery	Blink at 1Hz for 8s
Earbud plug in	—	Blink at 1Hz for 1s

Figure 5-7 2-LED Mode

Table 5-3 2-LED Display Mode

Mode	Battery Status	DLED1	DLED2		
Charge	Full	Off	Always On		
Charge	Charging	Off	Blink at 1Hz		
Discharge	Normal Power	On for 8s	Off		
Discharge	Low Battery	Blink at 1Hz for 8s	Off		
Earbud plug in	—	Blink at 1H	Iz for 1s		

Figure 5-8 3-LED Mode

Table 5-4 3-LED Display Mode

Mode	Battery Level	DLED1	DLED2	DLED3		
	Full	Always On	Always On	Always On		
Charra	66%-100%	Always On	Always On	Blink at 1Hz		
Charge	33%-66%	Always On	Blink at 1Hz	Off		
	0%-33%	Blink at 1Hz	Off	Off		
	66%-100%	On for 8s	On for 8s	On for 8s		
Disabarga	33%-66%	On for 8s	On for 8s	Off		
Discharge	5%-33%	On for 8s	Off	Off		
	0%-5%	Blink at 1Hz for 8s	Off	Off		
Earbud plug in		Blink at 1Hz for 1s				

Figure 5-9 4-LED Mode

Table 5-5 4-LED Display Mode

Mode	Battery Level	DLED1	DLED2	DLED3	DLED4
	Full	Always On	Always On	Always On	Always On
	75%-100%	Always On	Always On	Always On	Blink at 1Hz
Charge	50%-75%	Always On	Always On	Blink at 1Hz	Off
	25%-50%	Always On	Blink at 1Hz	Off	Off
	0%-25%	Blink at 1Hz	Off	Off	Off
	75%-100%	On for 8s	On for 8s	On for 8s	On for 8s
	50%-75%	On for 8s	On for 8s	On for 8s	Off
Discharge	25%-50%	On for 8s	On for 8s	Off	Off
Discharge	5%-25%	On for 8s	Off	Off	Off
	0%-5%	Blink at 1Hz	Off	Off	Off
	070-070	for 8s	Oli		
Earbud plug in	_		Blink at 1	Hz for 1s	

5.7.2 LED Display Mode Configuration

Table 5-6 LED Display Mode Register

Register Address	Bits	R/W	Fields	Description
				LED mode status, default: 2'b00
				00: 2 LED Mode
0x0d	[2:1]	RW		01: 3 LED Mode
				10: 1 LED Mode
				11: 4 LED Mode

5.7.3 LED Driving Capability Configuration

Table 5-7 LED Driving Register

Register Address	Bits	R/W	Fields	Description	
				LED current set, default: 2'b10	
				00: 0.5 mA	
0x04	[5:4]	RW	LED_DRV	01: 1 mA	
				10: 2 mA	
				11: 4 mA	

5.7.4 LED Display Control by I2C

Table 5-8 LED Control Register

Register Address	Bits	R/W	Fields	Description
				I2C control enable, default: 1'b0
0x0d	[0]	RW	W LED_I2C_EN	0: LED hardware control
				1: LED I2C control
				LED Status, default: 4'b0000
				[13]: LED4 Status (0: Off, 1: On)
0x0d	[13:10]	RW	LED_I2C_ST	[12]: LED3 Status (0: Off, 1: On)
				[11]: LED2 Status (0: Off, 1: On)
				[10]: LED1 Status (0: Off, 1: On)

5.8 Earbud communication

MCU supports up to 2M bidirectional communication with earbud by COML/R pin and EBL/R pin. There are two kinds of Earbud communication. One is through changing and reading COML/R pin level for communication, configure COM_I2C_SEL to 0 & COM_MD1EN to 1. The other is to communicate through the I2C control register changes, configure COM_I2C_SEL to 1 & COM_MD2EN to 1. The communication block diagram of COML and EBL is shown in Figure 5-10.

Figure 5-10 The communication block diagram of COML and EBL

When EBL/R is used as the output pin, the output low voltage is 0V, and the output high voltage is VBAT or 5V. (When boost is used, the output high voltage is 5V, otherwise the output high voltage is VBAT)

When COML/R is used as the output pin, the output low voltage is 0V, and the output high voltage is VBAT.

When EBL/R or COML/R is used as the input pins, the input low voltage is 0V - 0.35 * VCC, and the input high voltage is 0.65 * VCC - 5.5V. The input characteristics follow Table 6-5.

5.9 EN and IRQ

The IRQ pin will generate a 8ms neg-edge pulse, when fault or work status are appeared. MCU can wake up the chip by giving a high voltage on EN pin.

IRQ sources include the following:

- 1) Battery charge end
- 2) Watch dog time out fault
- 3) Battery charge time out fault
- 4) Battery pre-charge time out fault
- 5) Over temperature fault (more than 150°C)
- 6) NTC Hot fault
- 7) NTC cold fault
- 8) VSYS under voltage fault
- 9) VSYS over voltage fault
- 10) USB plug in
- 11) USB pull out

- 12) Left or right earbud plug in
- 13) Left or right earbud pull out
- 14) Left or right earbud light load
- 15) Left or right earbud short/under voltage fault
- 16) VUSB over voltage fault
- 17) VBAT over voltage fault when charge the battery
- 18) VBAT under voltage fault when the battery discharge

5.10 Over temperature protection

If the die temperature exceeds the trip point of the thermal shutdown limit (T_{SD}), all the circuits are disabled, and the IRQ pin is pulled low.

5.11 I2C interface

The I2C (inter-integrated circuit) module provides an I2C interface which is an industry standard two-line serial interface for MCU to communicate with external I2C interface. I2C bus uses two serial lines: a serial data line (SDA), and a serial clock line (SCL).

The I2C interface implements standard I2C protocol with standard-mode (up to 100 kHz) and fast-mode (up to 400 kHz). The I2C interface only supports Slave-mode. The I2C interface receive data on rising SCL and transmit data on falling SCL.

- + 8bit data[15:8]
- + 8bit data[7:0].

5.12 ADC description

ADC has 8 conversion channels, and its VREF is 2.5V, which can be enabled through bit [11] of Control Register.

ADC can configure conversion channel through bits [3:1] of ADC Register.

The 0 conversion channel of ADC is battery voltage. Battery voltage with digital logic, earbud detection can achieve LED display function.

The 1, 2, 3 conversion channels of ADC are VRCH, VSENS_EBL and VSEBS_EBR, which can be used to detect the charging current of earbud. Take the left earbud as an example, the left earbud charging current can be calculated as:

 $I_{SW_EBL} = \frac{20000 * VSENS_EBL}{3 * VRCH * R_{CCCH}}$

The maximum value of I_{SW_EBL} can be set by bits [6:5] of User configure Register 3. When the calculated I_{SW_EBL} is less than the maximum value, the earbud is in linear charging mode. When the calculated I_{SW_EBL} is equal to the maximum value, the earbud is in current limiting charging mode

The 4, 5, 6 conversion channels of ADC are VCOM, VIC and VIR, which can be used to detect charging current. The ICCCH value can be calculated as:

$$I_{CCCH} = \frac{10000(VIC - VCOM)}{R_{CCCH}(VIR - VCOM)}$$

The 7 conversion channel of ADC is AVSS.

5.13 Register Map

5.13.1 Fault Register

Bits	R/W	fields	default	Description
				I2C fault
45				Software can clear it by writing 1.
15	RW	I2C_ACK_FAULT	0b0	0: I2C normally
				1: I2C ACK fault/clear
14	R	Reserved	0b0	Must be kept at reset value.
				Pre-charge timeout fault
				Software can clear it by writing Control Register bit10
13	R	PCH_TO_FAULT		I2C_CLR_FAULT.
				0: Pre-charge normally
				1: Pre-charge timeout fault

Bits	R/W	fields	default	Description
Dita	10,14	TIERAS	usiault	Charge timeout fault
				Software can clear it by writing Control Register bit10
12	R		0b0	I2C_CLR_FAULT.
12	к	CH_TO_FAULT	000	0: Charge normally
				1: Charge timeout fault
				Watchdog timeout fault
				Software can clear it by writing Control Register bit13
				WDG_CLR or writing Watchdog Register bits
11	R	WDG_FAULT	0b0	WDG_DATA[9:1].
				0: Watchdog normally
				1: Watchdog timeout fault
10	-		05.0	VUSB over current fault
10	R	VUSB_OC_FAULT	0b0	0: VUSB current normally
				1: VUSB over current fault
	-		01.0	VUSB over voltage fault
9	R	VUSB_OV_FAULT	0b0	0: VUSB voltage normally
				1: VUSB over voltage fault
				EBR under voltage fault
				Software can clear it by writing Control Register bit10
8	R	EBR_UV_FAULT	0b0	I2C_CLR_FAULT.
				0: EBR voltage normally
				1: EBR under voltage fault
				EBL under voltage fault
				Software can clear it by writing Control Register bit10
7	R	EBL_UV_FAULT	0b0	I2C_CLR_FAULT.
				0: EBL voltage normally
				1: EBL under voltage fault
				VSYS over voltage fault
				Software can clear it by writing Control Register bit10
6	R	VSYS_OV_FAULT	0b0	I2C_CLR_FAULT.
				0: VSYS voltage normally
				1: VSYS over voltage fault
				VSYS under voltage fault
				Software can clear it by writing Control Register bit10
5	R	VSYS_UV_FAULT	0b0	I2C_CLR_FAULT.
				0: VSYS voltage normally
				1: VSYS under voltage fault
				NTC_HOT fault
				Software can clear it by writing Control Register bit10
4	R	NTC_HOT_FAULT	0b0	I2C_CLR_FAULT.
				0: NTC normally
				1: NTC hot fault

Bits	R/W	fields	default	Description
				NTC_COLD fault
				Software can clear it by writing Control Register bit10
3	R	NTC_COLD_FAULT	0b0	I2C_CLR_FAULT.
				0: NTC normally
				1: NTC cold fault
				VBAT over voltage fault
				Software can clear it by writing Control Register bit10
2	R	VBAT_OV_FAULT	0b0	I2C_CLR_FAULT.
				0: VBAT voltage normally
				1: VBAT over voltage fault
				VBAT under voltage fault
				Software can clear it by writing Control Register bit10
1	R	VBAT_UV_FAULT	0b0	I2C_CLR_FAULT.
				0: VBAT voltage normally
				1: VBAT under voltage fault
				Over temperature fault
0	R	TEMP_FAULT	0b0	0: The battery temperature normally
				1: The battery over temperature fault

5.13.2 Status Register 1

Address:	0b 00001
	0.0 0000.

Bits	R/W	fields	default	Description
				Pre-charge enable flag
15	R	PCH_ENF	0b0	0: Pre-charge is disabled
				1: Pre-charge is enabled
				VUSB enable flag
14	R	VUSB_ENF	0b0	0: VUSB is disabled
				1: VUSB is enabled
				VUSB over voltage detection enable flag
13	R	VUSBOV_ENF	0b0	0: VUSB over voltage detection is disabled
				1: VUSB over voltage detection is enabled
				VBAT pre-charge output flag
12	R	VBAT_PCH_OF	0b0	0: VBAT is higher than pre-charge threshold voltage VPCH
				1: VBAT is lower than pre-charge threshold voltage VPCH
				VBAT re-charge output flag
11	R	VBAT_RCH_OF	0b0	0: VBAT is higher than re-charge threshold voltage VRCH
				1: VBAT is lower than re-charge threshold voltage VRCH
				EBL enable flag
10	R	EBL_ENF	0b0	0: EBL is closed
				1: EBL is opened
9	R	EBR_ENF	0b0	EBR enable flag

E	Bits	R/W	fields	default	Description
					0: EBR is closed
					1: EBR is opened
	8	R	Reserved	0b0	Must be kept at reset value.
					USB plug in flag
	7	R	USB_PLINF	0b0	0: USB is not plugged in
					1: USB is plugged in
					Charge end flag
	6	R	CH_ENDF	0b0	0: Charge is not ended
					1: Charge is ended
					Constant current charge end flag
	5	R	CCCH_ENDF	0b0	0: Constant current charge is not ended
					1: Constant current charge is ended
					Left earbud plug in flag
	4	R	EBL_PLINF	0b0	0: Left earbud is not plugged in
					1: Left earbud is plugged in
					Right earbud plug in flag
	3	R	EBR_PLINF	0b0	0: Right earbud is not plugged in
					1: Right earbud is plugged in
					Left earbud current load flag
	2	R	EBL_IOFFF	0b0	0: Heavy load
					1: Light load
					Right earbud current load flag
	1	R	EBR_IOFFF	0b0	0: Heavy load
					1: Light load
					Boost enable flag
	0	R	BST_ENF	0b0	0: Boost is disabled
					1: Boost is enabled

5.13.3 Status Register 2

Bits	R/W	fields	default	Description
15:8	R	Reserved	0b0	Must be kept at reset value.
7	R	EBL_UVENF	0b0	EBL under voltage detection enable flag 0: EBL under voltage detection is disabled 1: EBL under voltage detection is enabled
6	R	EBR_UVENF	0b0	EBR under voltage detection enable flag 0: EBR under voltage detection is disabled 1: EBR under voltage detection is enabled
5	R	RCHCMP_ENF	0b0	Re-charge comparator enable flag 0: Re-charge comparator is disabled 1: Re-charge comparator is enabled

Bits	R/W	fields	default	Description
				VBAT over voltage detection enable flag
4	R	VBAT_OV_ENF	0b0	0: VBAT over voltage detection is disabled
				1: VBAT over voltage detection is enabled
3:2	R	Reserved	0b0	Must be kept at reset value.
				Pre- charge comparator enable flag
1	R	PCHCMP_ENF	0b0	0: Pre-charge comparator is disabled
				1: Pre-charge comparator is enabled
				Charge enable flag
0	R	CH_ENF	0b0	0: Charge is disabled
				1: Charge is enabled

5.13.4 Control Register

Bits	R/W	fields	default	Description
15	RW	Reserved	0b0	Must be kept at reset value.
				Temperature regulation enable
14	RW	TEMPREG_EN	0b0	0: Enable temperature regulation
				1: Disable temperature regulation
				Feed watchdog
				Software can clear it by writing 1 to this bit, or reset
13	RW	WDG_CLR	0b0	watchdog register bits WDG_DATA[9:1].
				0: Watchdog normally
				1: Feed watchdog
12	R	Reserved	0b0	Must be kept at reset value.
				ADC enable
11	RW	ADC_EN	0b0	0: Disable ADC
				1: Enable ADC
				I2C clear all faults
10	RW	I2C_CLR_FAULT	0b0	0: No effect
				1: Clear all faults
				Reset all chip
9	RW	RST_ALL	0b0	0: No effect
				1: Reset all chip
				Reset all chip but I2C itself
8	RW	RST_OTHS	0b0	0: No effect
				1: Reset all chip but I2C itself
				ADC clock selection
				00: ADC clock is 2MHz
7:6	RW	ADC_CLKSEL	0b0	01: ADC clock is 1MHz
				10: ADC clock is 500kHz
				11: ADC clock is 250kHz

Bits	R/W	fields	default	Description
5	R	Reserved	0b0	Must be kept at reset value.
				Boost enable
4	RW	BST_EN	0b0	0: Disable boost
				1: Enable boost
				Charge enable
3	RW	CH_EN	0b0	0: Disable charge
				1: Enable charge
				EBL switch enable
2	RW	EBL_EN	0b0	0: Close EBL
				1: Open EBL
				EBR switch enable
1	RW	EBR_EN	0b0	0: Close EBR
				1: Open EBR
				Sleep mode enable
0	RW	SLP_EN	0b0	0: Disable Sleep mode
				1: Enable Sleep mode

5.13.5 User configure Register 1

Address: 0b 00100

Bits	R/W	fields	default	Description
15:6	R	Reserved	0b0	Must be kept at reset value.
				LED current set
				00: 0.5 mA
5:4	RW	LED_DRV	0b10	01: 1 mA
				10: 2 mA
				11: 4 mA
				Boost maximum current threshold set
				00: Boost maximum current threshold 1.6A
3:2	RW	BST_ITHSET	0b10	01: Boost maximum current threshold 1.8A
				10: Boost maximum current threshold 2.0A
				11: Boost maximum current threshold 2.2A
				Earbud light load current set
				00: Earbud light load current is set to -10%
1:0	RW	IOFF_SET	0b10	01: Earbud light load current is set to -5%
				10: Earbud light load current is set to 0%
				11: Earbud light load current is set to +5%

5.13.6 User configure Register 2

Bits R/W fields default Description

Bits	R/W	fields	default	Description
15:13	R	Reserved	0b0	Must be kept at reset value.
				VSYS voltage set
				000: Boost output voltage 4.8V
				001: Boost output voltage 4.85V
				010: Boost output voltage 4.9V
12:10	RW	VSYS_SET	0b100	011: Boost output voltage 4.95V
				100: Boost output voltage 5V
				101: Boost output voltage 5.05V
				110: Boost output voltage 5.1V
				111: Boost output voltage 5.15V
				VUSB current limit set
				00: VUSB current limit is set to -5%
9:8	RW	VUSB_CL_SET	0b01	01: VUSB current limit is set to 0%
				10: VUSB current limit is set to +5%
				11: VUSB current limit is set to +10%
				Pre-charge current set
				00: Pre-charge current is set to 50%
7:6	RW	IPCH_SET	0b01	01: Pre-charge current is set to 100%
				10: Pre-charge current is set to 150%
				11: Pre-charge current is set to 150%
				Pre-charge terminate voltage set
				00: Pre-charge terminate voltage is 3.0V
5:4	RW	VPCHT_SET	0b01	01: Pre-charge terminate voltage is 3.1V
				10: Pre-charge terminate voltage is 3.2V
				11: Pre-charge terminate voltage is 3.3V
				Constant current charge current set
				00: Constant current charge current is set to 100%
3:2	RW	ICCCH_SET	0b0	01: Constant current charge current is set to 75%
				10: Constant current charge current is set to 50%
				11: Constant current charge current is set to 25%
				Re-charge threshold voltage set
				00: Re-charge threshold voltage is 3.9V
1:0	RW	VRCHT_SET	0b01	01: Re-charge threshold voltage is 4.0V
				10: Re-charge threshold voltage is 4.1V
				11: Re-charge threshold voltage is 4.2V

5.13.7 User configure Register 3

Bits	R/W	fields	default	Description
15:7	R	Reserved	0b0	Must be kept at reset value.
6:5	RW	EBLR_ILIM_SET	0b01	EBL/EBR limit current set

Bits	R/W	fields	default	Description
				00: 150mA
				01: 250mA
				10: 350mA
				11: 450mA
				Constant current charge terminate voltage set
				000: Constant current charge terminate voltage is 4.2V
				001: Constant current charge terminate voltage is 4.1V
		VCCCHT_SET		010: Constant current charge terminate voltage is 4.3V
4:2	RW			011: Constant current charge terminate voltage is 4.35V
				100: Constant current charge terminate voltage is 4.4V
				101: Constant current charge terminate voltage is 4.2V
				110: Constant current charge terminate voltage is 4.2V
				111: Constant current charge terminate voltage is 4.2V
				Charge terminate current set
				00: Charge terminate current minus 10mA
1:0	RW	ICHT_SET	0b10	01: Charge terminate current minus 5mA
				10: Charge terminate current no change
				11: Charge terminate current plus 5mA

5.13.8 Watchdog Register

Address: 0b 01011

Bits	R/W	Fields	default	Description
15:10	R	Reserved	0b0	Must be kept at reset value.
	RW	WDG_DATA	0x1ff	Watchdog counter set
9:1				Only set watchdog counter when WDG_EN is 0
	RW	WDG_EN	0b0	Watchdog enable
0				0: Disable watchdog
				1: Enable watchdog

5.13.9 COML/R Register

Bits	R/W	fields	default	Description
15	R	Reserved	0b0	Must be kept at reset value.
				EBL pin input enable
14	RW	COML_EBL_IEN	0b0	0: Disable EBL pin input
				1: Enable EBL pin input
				EBR pin input enable
13	RW	COMR_EBR_IEN	0b0	0: Disable EBR pin input
				1: Enable EBR pin input
12	RW	COML_IEN	0b0	COML pin input enable

0: Disable COML pin input 11 RW COMR_IEN 0b0 0: Disable COMR pin input 11 RW COMR_IEN 0b0 0: Disable COMR pin input 10 RW COML_EBL_OEN 0b0 0: Disable COMR pin input 10 RW COML_EBL_OEN 0b0 0: Disable EBL pin output 11 RW COMR_EBR_OEN 0b0 0: Disable EBL pin output 11 RW COMR_EBR_OEN 0b0 0: Disable EBR pin output 11 RW COM_MD2EN 0b0 0: Disable EBR pin output 11 RW COM_MD1EN 0b0 0: Disable mode 2 1: Enable mode 2 11 RW COML_OEN 0b0 0: Disable mode 1 COML/R pin control 1 RW COML_OEN 0b0 0: Disable COML pin output 1: Enable COML pin output 1 RW COML_OEN 0b0 0: Disable COML pin output 1: Enable COML pin output 1 Enable COML_OEN 0b0 0: Disable COML pin output 1: Enable COML pin output <t< th=""><th>Bits</th><th>R/W</th><th>fields</th><th>default</th><th>Description</th></t<>	Bits	R/W	fields	default	Description
1: Enable COML pin input 11 RW COMR_IEN 0b0 0: Disable COMR pin input 10 RW COML_EBL_OEN 0b0 0: Disable COMR pin input 10 RW COML_EBL_OEN 0b0 0: Disable EBL pin output 9 RW COMR_EBR_OEN 0b0 0: Disable EBR pin output 9 RW COMR_EBR_OEN 0b0 0: Disable EBR pin output 8 RW COM_MD2EN 0b0 0: Disable mode 2 7 RW COM_MD1EN 0b0 0: Disable mode 2 6 RW COML_OEN 0b0 0: Disable mode 1 6 RW COML_OEN 0b0 0: Disable COML pin output 7 RW COML_OEN 0b0 0: Disable mode 1 6 RW COML_OEN 0b0 0: Disable COML pin output 7 RW COML_OEN 0b0 0: Disable COML pin output 6 RW COML_OEN 0b0 0: Disable COML pin output 7 RW COML_OEN 0b0 0: Disable COML pin output 6 RW	Dita		lielus	uelault	-
Image:					
11 RW COMR_IEN 0b0 0: Disable COMR pin input 10 RW COML_EBL_OEN 0b0 0: Disable EBL pin output 9 RW COMR_EBR_OEN 0b0 0: Disable EBL pin output 9 RW COMR_EBR_OEN 0b0 0: Disable EBR pin output 9 RW COMR_EBR_OEN 0b0 0: Disable EBR pin output 10 RW COMR_MD2EN 0b0 0: Disable EBR pin output 8 RW COM_MD2EN 0b0 0: Disable mode 2					
1: Enable COMR pin input 10 RW COML_EBL_OEN 0b0 0: Disable EBL pin output 10 RW COML_EBL_OEN 0b0 0: Disable EBL pin output 9 RW COMR_EBR_OEN 0b0 0: Disable EBR pin output 8 RW COM_MD2EN 0b0 0: Disable EBR pin output 8 RW COM_MD2EN 0b0 0: Disable mode 2 I2C control 7 RW COM_MD1EN 0b0 0: Disable mode 2 I2C control 7 RW COM_MD1EN 0b0 0: Disable mode 1 COML/R pin control 7 RW COM_OD_OEN 0b0 0: Disable mode 1 COML/R pin output 6 RW COM_OD_OEN 0b0 0: Disable COML pin output 5 RW COM_IOEN 0b0 0: Disable COML pin output 6 RW COM_IOEN 0b0 0: Disable COML pin output 6 RW COM_IOEN 0b0 0: Communication selection 7 RW COM_IOEN 0b0 0: COML/R pin control 1	11			060	
10 RW COML_EBL_OEN 0b0 CDisable EBL pin output 9 RW COMR_EBR_OEN 0b0 0: Disable EBL pin output 9 RW COMR_EBR_OEN 0b0 0: Disable EBR pin output 8 RW COM_MD2EN 0b0 0: Disable BBR pin output 8 RW COM_MD2EN 0b0 0: Disable mode 2 - 12C control 7 RW COM_MD1EN 0b0 0: Disable mode 2 - 12C control 7 RW COM_MD1EN 0b0 0: Disable mode 1 - COML/R pin control 6 RW COML_OEN 0b0 0: Disable COML pin output enable 6 RW COML_OEN 0b0 0: Disable COML pin output 5 RW COMR_OEN 0b0 0: Disable COMR pin output 6 RW COM_IOEN 0b0 0: Disable COM pin output 7 RW COMR_OEN 0b0 0: Disable COM pin output 6 RW COM_IOEN 0b0 0: COML pin output enable <t< td=""><td>11</td><td>KVV</td><td>COMR_IEN</td><td>000</td><td></td></t<>	11	KVV	COMR_IEN	000	
10 RW COML_EBL_OEN 0b0 0: Disable EBL pin output 9 RW COMR_EBR_OEN 0b0 0: Disable EBR pin output 9 RW COMR_EBR_OEN 0b0 0: Disable EBR pin output 8 RW COM_MD2EN 0b0 0: Disable EBR pin output 8 RW COM_MD2EN 0b0 0: Disable mode 2 7 RW COM_MD1EN 0b0 0: Disable mode 1 7 RW COML_OEN 0b0 0: Disable mode 1 6 RW COML_OEN 0b0 0: Disable mode 1 6 RW COML_OEN 0b0 0: Disable COML pin output 7 RW COML_OEN 0b0 0: Disable COML pin output 6 RW COML_OEN 0b0 0: Disable COML pin output 7 RW COMR_OEN 0b0 0: Disable COML pin output 6 RW COMR_OEN 0b0 0: Disable COML pin output 7 RW COMR_OEN 0b0 0: COML pin output 8 RW COML_OEN 0b0 0: COML pin output					
9 RW COMR_EBR_OEN 0b0 EBR pin output enable 9 RW COMR_EBR_OEN 0b0 0: Disable EBR pin output 8 RW COM_MD2EN 0b0 0: Disable EBR pin output 7 RW COM_MD1EN 0b0 0: Disable mode 2 7 RW COM_MD1EN 0b0 0: Disable mode 1 6 RW COML_OEN 0b0 0: Disable mode 1 6 RW COML_OEN 0b0 0: Disable mode 1 6 RW COML_OEN 0b0 0: Disable cOML pin output 6 RW COML_OEN 0b0 0: Disable COML pin output 7 RW COMR_OEN 0b0 0: Disable COML pin output 6 RW COMR_OEN 0b0 0: Disable COML pin output 7 RW COMR_OEN 0b0 0: COMR pin output 8 RW COMR_OEN 0b0 0: COMR pin output 9 RW COML_OEN 0b0 0: COMR pin output 1: Enable COMR pin output 1: Enable COMR pin output 1: Enable COMR pin output	10	514			
9 RW COMR_EBR_OEN 0b0 0: Disable EBR pin output enable 8 RW COM_MD2EN 0b0 0: Disable EBR pin output 8 RW COM_MD2EN 0b0 0: Disable mode 2 7 RW COM_MD1EN 0b0 0: Disable mode 2 7 RW COM_MD1EN 0b0 0: Disable mode 1 6 RW COML_OEN 0b0 0: Disable mode 1 6 RW COML_OEN 0b0 0: Disable mode 1 6 RW COML_OEN 0b0 0: Disable cOML pin output 5 RW COMR_OEN 0b0 0: Disable COML pin output 5 RW COMR_OEN 0b0 0: Disable COML pin output 6 RW COMR_OEN 0b0 0: Disable COML pin output 7 Emable COMR_OEN 0b0 0: Disable COML pin output 6 RW COMR_OEN 0b0 0: Disable COML pin output 7 Emable COMR_OEN 0b0 0: COML pin output 8 R COML_OEN 0b0 0: COML pin output	10	RW	COML_EBL_OEN	000	
9 RW COMR_EBR_OEN 0b0 0: Disable EBR pin output 8 RW COM_MD2EN 0b0 0: Disable mode 2 7 RW COM_MD1EN 0b0 0: Disable mode 2 7 RW COM_MD1EN 0b0 0: Disable mode 1 6 RW COML_OEN 0b0 0: Disable COML pin output enable 6 RW COML_OEN 0b0 0: Disable COML pin output 5 RW COMR_OEN 0b0 0: Disable COML pin output 5 RW COMR_OEN 0b0 0: Disable COML pin output 6 RW COMR_OEN 0b0 0: Disable COML pin output 7 RW COMR_OEN 0b0 0: Disable COML pin output 6 RW COMR_OEN 0b0 0: Disable COML pin output 7 RW COML_OEN 0b0 0: Disable COML pin output 6 RW COML_OEN 0b0 0: Disable COML pin output 7 RW COML_OEN 0b0 0: COML pin output enable 6 RW COML_IC_SEL 0b0 0:					
Image: Comparison of the comparison					
8 RW COM_MD2EN 0b0 Communication enable mode 2 I2C control 7 RW COM_MD1EN 0b0 Disable mode 2 7 RW COM_MD1EN 0b0 Communication enable mode 1 COML/R pin control 6 RW COML_OEN 0b0 Disable mode 1 6 RW COML_OEN 0b0 Disable COML pin output enable 5 RW COMR_OEN 0b0 Disable COML pin output 5 RW COMR_OEN 0b0 Disable COMR pin output 4 RW COM_I2C_SEL 0b0 Disable COML pin output 3 R COML_IN 0b0 COML/R pin control 1: I2C control Disable COML pin input signal COML pin input signal COML pin input signal 2 R COMR_IN 0b0 COMR pin input signal COMR pin input signal 1 RW COML_O 0b0 COMR pin input signal COML pin output signal 3 R COML_O 0b0 COMR pin input signal COMR pin output signal 1 RW COML_O 0b0 COML p	9	RW	COMR_EBR_OEN	0b0	
8 RW COM_MD2EN 0b0 0: Disable mode 2 7 RW COM_MD1EN 0b0 0: Disable mode 1 7 RW COM_MD1EN 0b0 0: Disable mode 1 6 RW COML_OEN 0b0 0: Disable coML pin output enable 6 RW COML_OEN 0b0 0: Disable COML pin output 5 RW COMR_OEN 0b0 0: Disable COMR pin output 5 RW COMR_OEN 0b0 0: Disable COMR pin output 4 RW COM_I2C_SEL 0b0 0: COML/R pin control 3 R COML_IN 0b0 0: COML pin input signal 3 R COML_IN 0b0 0: COML pin input signal 2 R COMR_IN 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COML pin output signal 1 RW COML_O 0b0 0: COML pin output signal					
0 NM COM_MD1EN 000 1: Enable mode 2 7 RW COM_MD1EN 0b0 0: Disable mode 1 6 RW COML_OEN 0b0 0: Disable coML pin output enable 6 RW COML_OEN 0b0 0: Disable COML pin output 5 RW COMR_OEN 0b0 0: Disable COMR pin output 5 RW COMR_OEN 0b0 0: Disable COMR pin output 4 RW COM_I2C_SEL 0b0 0: COML pin output 3 R COML_IN 0b0 0: COML pin input signal 2 R COMR_IN 0b0 0: COMR pin input signal 1 RW COML_IN 0b0 0: COMR pin input signal 1 RW COML_IN 0b0 0: COML pin input signal 3 R COMR_IN 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COML pin output signal 1 RW COML_O 0b0 0: COML pin output signal					
7 RW COM_MD1EN 0b0 Communication enable mode 1 COML/R pin control 6 RW COML_OEN 0b0 COML pin output enable 6 RW COML_OEN 0b0 COML pin output enable 5 RW COMR_OEN 0b0 COMR pin output enable 5 RW COMR_OEN 0b0 COMR pin output enable 6 RW COMR_OEN 0b0 COMR pin output enable 5 RW COMR_OEN 0b0 COMR pin output enable 5 RW COMR_OEN 0b0 COMR pin output enable 6 RW COMR_OEN 0b0 COMR pin output enable 5 RW COMR_OEN 0b0 COMR pin output enable 6 RW COML_OEN 0b0 COMR pin output 1: Enable COMR pin output COMR pin output COMR pin output 4 RW COM_I2C_SEL 0b0 COML pin output signal 3 R COML_IN 0b0 COML pin input signal 2 R COMR_IN 0b0 COMR pin input low <tr< td=""><td>8</td><td>RW</td><td>COM_MD2EN</td><td>0b0</td><td></td></tr<>	8	RW	COM_MD2EN	0b0	
7 RW COM_MD1EN 0b0 0: Disable mode 1 6 RW COML_OEN 0b0 0: Disable COML pin output enable 6 RW COML_OEN 0b0 0: Disable COML pin output 5 RW COMR_OEN 0b0 0: Disable COMR pin output 5 RW COMR_OEN 0b0 0: Disable COMR pin output 4 RW COM_I2C_SEL 0b0 0: COML/R pin control 4 RW COML_IN 0b0 0: COML pin input signal 3 R COML_IN 0b0 0: COML pin input signal 2 R COMR_IN 0b0 0: COMR pin output signal 1 RW COML_O 0b0 0: COML pin input signal 1 RW COML_IN 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COML pin output signal 1 RW COML_O 0b0 0: COML pin output signal 1 RW COML_O 0b0 0: COML pin output signal 1 RW COML_O 0b0 0: COML pin output sig					
1 Image: Complexity of the second					· ·
6 RW COML_OEN 0b0 COML pin output enable 6 RW COML_OEN 0b0 0: Disable COML pin output 5 RW COMR_OEN 0b0 0: Disable COML pin output 5 RW COMR_OEN 0b0 0: Disable COMR pin output 4 RW COM_I2C_SEL 0b0 0: COML/R pin control 4 RW COM_I2C_SEL 0b0 0: COML/R pin control 3 R COML_IN 0b0 0: COML pin input signal 3 R COML_IN 0b0 0: COML pin input signal 2 R COMR_IN 0b0 0: COMR pin input signal 2 R COMR_IN 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COML pin output signal 1 RW COML_O 0b0 0: COML pin output signal 1 RW COML_O 0b0 0: COML pin output signal 1 RW COML_O 0b0 0: COML pin output signal	7	RW	COM_MD1EN	0b0	0: Disable mode 1
6 RW COML_OEN 0b0 0: Disable COML pin output 5 RW COMR_OEN 0b0 0: Disable COMR pin output enable 5 RW COMR_OEN 0b0 0: Disable COMR pin output 4 RW COM_I2C_SEL 0b0 0: COML/R pin control 4 RW COM_LI2C_SEL 0b0 0: COML/R pin control 3 R COML_IN 0b0 0: COML pin input signal 3 R COMR_IN 0b0 0: COML pin input signal 2 R COMR_IN 0b0 0: COMR pin input signal 2 R COMR_IN 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COML pin output signal 1 RW COML_O 0b0 0: COML pin output signal 1 RW COML_O 0b0 0: COML pin output signal 1 RW COML_O 0b0 0: COML pin output signal 1 RW COML_O 0b0 0: COML pin output low 1: COML pin output signal 0: COML pin output signal 0: COML pin outpu					1: Enable mode 1
Image: Second					COML pin output enable
5 RW COMR_OEN 0b0 0: Disable COMR pin output 5 RW COMR_OEN 0b0 0: Disable COMR pin output 4 RW COM_I2C_SEL 0b0 0: COML/R pin control 4 RW COM_I2C_SEL 0b0 0: COML/R pin control 3 R COML_IN 0b0 0: COML pin input signal 3 R COMR_IN 0b0 0: COML pin input signal 2 R COMR_IN 0b0 0: COMR pin input signal 2 R COMR_IN 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COML pin output signal 1 RW COML_O 0b0 0: COML pin output signal 1 RW COML_O 0b0 0: COML pin output signal 0 RW COMR_O 0b0 0: COML pin output low 1: COML pin output signal 0: COML pin output signal 0: COML pin output high	6	RW	COML_OEN	0b0	0: Disable COML pin output
5 RW COMR_OEN 0b0 0: Disable COMR pin output 4 RW COM_I2C_SEL 0b0 0: COML/R pin control 4 RW COM_I2C_SEL 0b0 0: COML/R pin control 3 R COML_IN 0b0 0: COML pin input signal 3 R COML_IN 0b0 0: COML pin input signal 2 R COMR_IN 0b0 0: COMR pin input signal 2 R COMR_IN 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COML pin output signal 1 RW COML_O 0b0 0: COML pin output signal 0 RW COML_O 0b0 0: COML pin output signal 0 RW COML_O 0b0 0: COML pin output signal 0 RW COMR_O 0b0 0: COML pin output signal 0 RW COMR_O 0b0 0: COMR pin output signal					1: Enable COML pin output
1: Enable COMR pin output 1: Enable COMR pin input signal 1: COML_IN 0b0 1: COMR pin input signal 1: COMR pin input low 1: COMR pin output signal 1: COML_O 0b0 0: COML pin output signal 1: COML_O 0b0 0: COML pin output low 1: COMR pin output signal 0: RW COMR_O 0: COMR pin output low 1: COMR pin output low 1: COMR pin output low 1: COMR pin output low					COMR pin output enable
4 RW COM_I2C_SEL 0b0 0: COML/R pin control 0: COML/R pin control 1: I2C control 3 R COML_IN 0b0 0: COML pin input signal 3 R COML_IN 0b0 0: COML pin input signal 2 R COMR_IN 0b0 0: COMR pin input signal 2 R COMR_IN 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COMR pin input signal 0 RW COML_O 0b0 0: COML pin output signal 0 RW COMR_O 0b0 0: COML pin output signal 0 RW COMR_O 0b0 0: COML pin output low	5	RW	COMR_OEN	0b0	0: Disable COMR pin output
4 RW COM_I2C_SEL 0b0 0: COML/R pin control 3 R COML_IN 0b0 0: COML pin input signal 3 R COML_IN 0b0 0: COML pin input signal 2 R COMR_IN 0b0 0: COMR pin input signal 2 R COMR_IN 0b0 0: COMR pin input signal 2 R COMR_IN 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COML pin output signal 1 RW COML_O 0b0 0: COML pin output signal 0 RW COMR_O 0b0 0: COMR pin output signal 0 RW COMR_O 0b0 0: COMR pin output signal					1: Enable COMR pin output
1: I2C control 3 R COML_IN 0b0 0: COML pin input signal 3 R COML_IN 0b0 0: COML pin input low 1: COML pin input high COMR pin input signal 0: COMR pin input signal 2 R COMR_IN 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COML pin output signal 0 RW COMR_O 0b0 0: COML pin output signal 0 RW COMR_O 0b0 0: COMR pin output signal					Communication selection
3 R COML_IN 0b0 COML pin input signal 3 R COML_IN 0b0 0: COML pin input low 1: COML pin input signal 0 COMR pin input signal 2 R COMR_IN 0b0 0: COMR pin input signal 2 R COMR_IN 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COML pin output signal 1 RW COML_O 0b0 0: COML pin output signal 0 RW COMR_O 0b0 0: COMR pin output signal 0 RW COMR_O 0b0 0: COMR pin output signal	4	RW	COM_I2C_SEL	0b0	0: COML/R pin control
3 R COML_IN 0b0 0: COML pin input low 2 R COMR_IN 0b0 0: COMR pin input signal 2 R COMR_IN 0b0 0: COMR pin input signal 1 RW COML_O 0b0 0: COMR pin output signal 1 RW COML_O 0b0 0: COML pin output signal 0 RW COML_O 0b0 0: COML pin output signal 0 RW COMR_O 0b0 0: COML pin output signal					1: I2C control
1: COML pin input high 1: COML pin input high 1: COMR pin input signal 1: COMR pin input signal 1: COMR pin input signal 1: COMR pin input low 1: COMR pin input low 1: COMR pin input signal 1 RW COML_O 0b0 0: COML pin output signal 0 RW COMR_O 0b0 0: COMR pin output signal 0: COMR_O 0b0 0: COMR pin output signal 0: RW COMR_O 0b0 0: COMR pin output signal 0: COMR_O 0b0 0: COMR pin output signal					COML pin input signal
2 R COMR_IN 0b0 0: COMR pin input signal 2 R COMR_IN 0b0 0: COMR pin input low 1 RW COML_O 0b0 0: COML pin output signal 1 RW COML_O 0b0 0: COML pin output signal 0 RW COMR_O 0b0 0: COML pin output low 0 RW COMR_O 0b0 0: COMR pin output signal	3	R	COML_IN	0b0	0: COML pin input low
2 R COMR_IN 0b0 0: COMR pin input low 1 RW COML_O 0b0 0: COMR pin input high 1 RW COML_O 0b0 0: COML pin output signal 0 RW COMR_O 0b0 0: COMR pin output low 0 RW COMR_O 0b0 0: COMR pin output signal					1: COML pin input high
1 RW COML_O 0b0 0: COML pin output signal 0 RW COMR_O 0b0 0: COML pin output low 0 RW COMR_O 0b0 0: COMR pin output signal					COMR pin input signal
1 RW COML_O 0b0 0: COML pin output signal 1 RW COML_O 0b0 0: COML pin output low 1: COML pin output high 0 COMR_O 0b0 0: COMR pin output signal 0 RW COMR_O 0b0 0: COMR pin output signal	2	R	COMR_IN	0b0	0: COMR pin input low
1 RW COML_O 0b0 0: COML pin output low 1: COML pin output high 0 RW COMR_O 0b0 0: COMR pin output signal 0: COMR_O 0b0					1: COMR pin input high
0 RW COMR_O 0b0 0: COMR pin output low					COML pin output signal
0 RW COMR_O 0b0 1: COML pin output high	1	RW	COML_O	0b0	0: COML pin output low
0 RW COMR_O 0b0 0: COMR pin output low					1: COML pin output high
0 RW COMR_O 0b0 0: COMR pin output low					COMR pin output signal
	0	RW	COMR_O	0b0	
	-				1: COMR pin output high

5.13.10 LED Register

Bits	R/W	fields	default	Description
15:14	R	Reserved	0b0	Must be kept at reset value.
				LED4 Status
13 RW LED4_I2C_ST 0b0 0: Off		0: Off		
				1: On
				LED3 Status
12	RW	LED3_I2C_ST	0b0	0: Off
				1: On
				LED2 Status
11	RW	LED2_I2C_ST	0b0	0: Off
				1: On
				LED1 Status
10	RW	LED1_I2C_ST	0b0	0: Off
				1: On
9:3	R	Reserved	0b0	Must be kept at reset value.
				LED mode status
				00: 2 LED mode
2:1	RW	LED_I2C_MDST	0b0	01: 3 LED mode
				10: 1 LED mode
				11: 4 LED mode
				LED I2C control enable
0	RW	LED_I2C_EN	0b0	0: LED Hardware control
				1: LED I2C control

5.13.11 ADC Register

Address: 0b 01110

Bits	R/W	fields	default	Description
15:4	R	VBAT_VM	0b0	ADC measure VBAT 12 bit data.
				ADC channel select
				000: Channel VBAT
				001: Channel VRCH
				010: Channel VSENS_EBL
3:1	RW	ADC_CHSEL	0b0	011: Channel VSENS_EBR
				100: Channel VCOM
				101: Channel VIC
				110: Channel VIR
				111: Channel AVSS
0	R	Reserved	0b0	Must be kept at reset value.

5.13.12 DEBUG Register

Bits	R/W	fields	default	Description
				I2C/COML/COMR PAD filter enable.
15	RW	FIL_EN	0b1	0: Filter is disabled
			0b1 I2C/COML/COMR PAD filter enable. 0b1 0: Filter is disabled 1: Filter is enabled 1: Filter is enabled 0b0 Must be kept at reset value. 0b0 Must be kept at reset value. 0b1 0: 120 minute 0b0 01: 180 minute 10: 240 minute 11: 60 minute 11: 60 minute 12: 240 minute 0b0 01: 180 minute 0: 240 minute 11: 60 minute 0: Battery is charged fully, set by software. It w LED display 0: Battery is not charged fully. LED displays according to battery power	1: Filter is enabled
14:12	R	Reserved	0b0	Must be kept at reset value.
				Charge status timeout time select
				00: 120 minute
11:10	R/W	CH_TO_SEL	0.00	01: 180 minute
				10: 240 minute
				11: 60 minute
				Battery is charged fully, set by software. It will affect the
				LED display
				0: Battery is not charged fully. LED displays normally
9	R/W	VBAT_FULL	UdU	according to battery power
				1: Battery is charged fully. LED displays according to
				battery full charge
8:0	R	Reserved	0b0	Must be kept at reset value.

6 Electrical characteristics

6.1 Absolute maximum ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Min	Max	Unit
Vusb	Power supply pin from USB other 5V input	-0.3	7	V
V USB	Power supply pin from USB other 5V input, pulsed less than 20us	-0.3	20	V
VBAT	Battery voltage	-0.3	7	V
V _{SYS}	Output Voltage	-0.3	7	V
Vcc	LDO output voltage and Internal logic voltage	-0.3	7	V
Vio	I/O pin voltage (LEDx, ISET, EN, NTC, SCL, SDA)	-0.3	7	V
V_{EBLR}	Earbuds positive terminal voltage (EBL/EBR)	-0.3	7	V
V _{SW}	Switching node voltage (SW)	-0.3	7	V
	Thermal characteristics			
TJ	Operating junction temperature	-40	150	°C
T _{stg}	Storage temperature	-65	150	°C

Table 6-1 Absolute maximum ratings

6.2 Recommended operation conditions

Table 6-2 Recommended operation conditions

Symbol	Parameter	Min	Тур	Max	Unit			
V _{USB}	Power supply pin from USB other 5V input	4.4	5.0	5.5	V			
VBAT	Battery voltage	2.2	4.0	4.4	V			
V _{SYS}	BOOST output Voltage	4.8	5.0	5.15	V			
Vcc	LDO output voltage and Internal logic voltage	2.0	3.3	3.6	V			
	Thermal characteristics							
TA	Operating ambient temperature	-20		85	°C			

6.3 Electrical sensitivity

The device is strained in order to determine its performance in terms of electrical sensitivity. Electrostatic discharges (ESD) are applied directly to the pins of the sample.

	Licen ostatie Discharge charac			
Symbol	Parameter	Conditions	Value	Unit
	Electrostatic discharge	T _A = 25 °C;	.2000	V
Vesd(HBM)	voltage (human body model)	JS-001-2017	±2000	v
	Electrostatic discharge	T _A = 25 °C;	±1000	V
Vesd(CDM)	voltage (charge device model)	JS-002-2018	±1000	V

Table 6-3 Electrostatic Discharge characteristics

6.4 **Power supplies voltages and currents**

Table 6-4 Power supplies voltages and currents

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
la	Sleep mode quiescent	$V_{BAT} = 5 \text{ V}, \text{T}_{A} = 25 ^{\circ}\text{C}$		_	5.0	μA
IQ	current	$V_{BAT} = 5 V$, $T_A = 85 °C$			TBD	μA
ton	Turn-on time	$V_{USB} > V_{UVLO}$ to outputs ready	5.0			ms
Vcc	VCC regulator voltage	I_{VCC} = 0 to 80 mA (V _{BAT} > 3.4 V)	3.1	3.3	3.5	V

6.5 Logic input characteristics

Table 6-5 Logic input characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VIL	Input logic low voltage	—	0		0.35 * Vcc	V
Vін	Input logic high voltage	—	0.65 * Vcc	_	5.5	V
V _{HYS}	Input logic hysteresis	—	100	_	_	mV

6.6 Open drain outputs characteristics

Open drain output pins include SCL, SDA, IRQ.

Table 6-6 Open drain output characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vol	Output logic low voltage	I _O = 5 mA	—	—	0.1	V
loz	Output high impedance leakage	$V_{O} = V_{BAT}$	-2	—	2	μA

6.7 NTC characteristics

Table 6-7 NTC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{TL}	Low Temperature threshold voltage	_		0.6 * V _{SYS}	_	V
V _{TH}	High Temperature threshold voltage	-	_	0.3 * V _{SYS}	_	V
Voffset	Offset Volatage				5	mV

6.8 Switching charger characteristics

Table 6-8 Charger characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vсvсн	CV Charge voltage	Programmable	4.1	4.2	4.4	V
VCVCH	CV Charge voltage precision	—		0.5	—	%
Ісссн	CC Charge current	R _{сссн} = 20 КΩ		0.5	_	А
I _{PCH}	Pre-Charge current	R _{сссн} = 20 КΩ	40	50	60	mA
I _{TER}	Charge terminate current			рсн + 10		mA
VPCH	Pre-Charge to CC charge transition	Programmable		3.0	_	V
V _{PCHHYS}	Pre-Charge hysteresis voltage	—		200	—	mV
V _{RCH}	Re-Charge threshold	_		4	_	V
VRCHHYS	Re-Charge hysteresis voltage	_	_	200	_	mV

Figure 6-1. Constant current charging efficiency

6.9 Boost converter characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VBAT	Operation battery voltage	_	3.0	3.7	4.5	V
VBATLOW	Minimum battery	I _{SYS} = 1 A	2.9	—	_	V
I _{BAT}	Boost operation current	$V_{BAT} = 3.7 V$	—	4.0	6.0	mA
Vsys	Output voltage	Isys = 0 mA	4.90	5.05	5.15	V
VSYS	Output voltage	I _{SYS} = 1 A	4.80	5.00	5.15	V
ΔV_{SYS}	Output ripple	—	—	100	_	mV
I _{SYS}	Output current	—	_	_	1	А
R_{HS}	High Side PMOS on resistance	V_{CC} = 3.3 V, T_{A} = 25 $^{\circ}C$	_	150	_	mΩ
R_{LS}	Low Side NMOS on resistance	V_{CC} = 3.3 V, T_{A} = 25 $^{\circ}C$	—	150	—	mΩ
h	Peak current limit	$V_{BAT}=3.7~V,T_A=25~^\circ C$	—	2.0	—	А
Iли	Peak current limit during startup	$V_{BAT}=3.7~V,~T_{A}=25~^{\circ}C$	—	0.6	—	А
f _{SW}	Switching frequency	—	0.9	1.0	1.1	MHz
I _{SW}	Switching node leakage	_	_	_	1.0	uA
D _{max}	Maximum Duty Cycle	_	90	_	_	%

Table 6-9 Boost converter characteristics

Figure 6-3. BOOST conversion efficiency

6.10 ADC characteristics

Table 6-10 ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VBAT	Operation battery voltage	—	3.0	3.7	4.5	V
f _{ADC}	ADC clock frequency	_		2.0		MHz
fs	Sampling rate	—	_	0.08		MSPS
V_{REFP}	Positive Reference Voltage	—	2.49	2.5	2.51	V
Vrefn	Negative Reference Voltage	—	_	0		V
	Compling time	fadc = 2 MHz	_	6		us
ts	Sampling time	$IADC = 2 IVI \square 2$	_	12		1/ f _{ADC}
4	Total conversion time(including			25		1/ f
tCONV	sampling time)	—	_	20		1/ f _{ADC}
t _{STAB}	Power-up time	—	—		1	us
ENOB	Effective number of bits	$f_{ADC} = 2 MHz$	_	10.3		bits
SNDR	Signal-to-noise and distortion ratio	Input Frequency = 2	_	63.8		
SNR	Signal-to-noise ratio	kHz	_	64.5	_	dB
THD	Total harmonic distortion	stortion Temperature = 25 °C		-71.0	_	
Offset Offset error		fadc = 2 MHz	±1	_	_	LSB
DNL	Differential linearity error	$IADC = 2 IVI \square Z$	±1.5	_	_	LOD

6.11 Timing characteristics

Table 6-11 Timing characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
tPCH_FAULT	Pre-charge fault time			30		min
t _{сн_то}	Charge Time Out	_	_	180	_	min

6.12 Earbud Output Switch characteristics

Table 6-12 Earbud output switch characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	EBL/EBR output current Limit	V _{BAT} = 3.0 ~ 4.2 V	—	250	_	mA
LIM	(Default)	VBAT = 3.0 ~ 4.2 V				IIIA
VSHORT	Short protect voltage	—	_	4.3		V
Rswitch	Switch resistance	V _{SYS} = 5 V	_	400	_	mΩ
$I_{\text{DET}_\text{EAR}}$	Earbud detected current threshold	_	5		_	uA

6.13 I2C characteristics

Table 6-13 I2C characteristics

Symbol	Parameter	Conditions	Standard mode		Fast mode		Unit
Symbol	Parameter	Conditions	Min	Max	Min	Max	Unit
t _{SCL(H)}	SCL clock high time	_	4.0	—	0.6		μs
tscl(L)	SCL clock low time	_	4.7	—	1.3		μs
t _{su(SDA)}	SDA setup time	_	250	—	100		ns
t _{h(SDA)}	SDA data hold time	_	0	3450	0	900	ns
tr(SDA/SCL)	SDA and SCL rise time	_		1000		300	ns
t _{f(SDA/SCL)}	SDA and SCL fall time	_		300	3	300	ns
th(STA)	Start condition hold time	_	4.0	_	0.6		μs

Figure 6-4. I2C bus timing diagram

6.14 **Protection features**

Protection features include over current protection, under voltage, over voltage and thermal shutdown.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
	,	VUSB Switch		L	1	. <u></u>	
V _{USB_UVP}	V _{USB} under voltage Protection Threshold	VUSB falling	_	4.3	_	V	
VUSB_OVP	V _{USB} over voltage Protection Threshold	VUSB rising	_	5.6	_	V	
IUSB_Limit	V _{USB} input current limit	_		0.5 + I _{СССН}	—	А	
V_{SYS_short}	V _{SYS} short voltage Protection Threshold	Vsys falling	_	4.0	—	V	
	·	Charge					
		VCCCHT_SET = 000		4.3	—		
		VCCCHT_SET = 001		4.2	_		
		VCCCHT_SET = 010	_	4.4			
N (V _{BAT} over voltage	VCCCHT_SET = 011		4.45	—		
VBAT_OVP	Protection Threshold	VCCCHT_SET = 100	—	4.5	_	V	
		VCCCHT_SET = 101	_	4.3	—		
		VCCCHT_SET = 110		4.3	—		
		VCCCHT_SET = 111		4.3	—		
V _{SYS_DPM}	V _{SYS} voltage regulation limit	_	_	4.6	—	V	
		Boost		L	1	I	
V _{BAT_UVP}	V _{BAT} under voltage Protection Threshold	VBAT Falling	_	2.8	_	V	
Vbatuvp_hsy	V _{BAT} under voltage Protection hysteresis	_	_	0.1	_	V	
V_{SYS_short}	V _{SYS} short Protection Threshold	_	_	4.3	_	V	
V _{SYS_UVP}	V _{SYS} over voltage Protection Threshold	_	_	5.5	_	V	
	Earbu	ud Output Switch	1	1	1		
		EBLR_ILIM_SET = 00	_	150	—	mA	
		EBLR_ILIM_SET = 01	—	250	—	mA	
ILIM	EBL/EBR output current Limit	EBLR_ILIM_SET = 10	—	350	—	mA	
		EBLR_ILIM_SET = 11	_	450	—	mA	
Iclose	EBL/EBR light load Protection current	$R_{close} = 50 \ K\Omega$	_	10	_	mA	
V _{short}				4.3	<u> </u>	V	

Table 6-14 Protection features characteristics

GD30WS8815x Datasheet

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Protection Threshold						
Temperature						
Тот	Thermal shutdown temperature	Die temperature, TJ		150	_	°C
T _{HYS}	Thermal hysteresis	Die temperature, TJ		20	—	°C

7

Typical application circuit

Figure 7-1 Typical GD30WS8815x application circuit

8 Layout guideline

Figure 8-1 Typical GD30WS8815x layout guideline

Notes:

- The VBAT C1 bypass capacitor should be connected to AGND to ensure the stability of the analog loop. The VBAT C4 and C5 bypass capacitors should be connected to PGND to ensure the stability of the power loop.
- 2. The SW L1 inductor should be as close to the pin as possible to reduce parasitic parameters.
- 3. The VSYS C6 and C7 bypass capacitor should be as close to the pin as possible to ensure the stability of the output power supply.

9 Package information

9.1 QFN24 package information

Figure 9-1 QFN24 package outline

Table 9-1. QFN24 dimensions

Symbol	Min	Тур	Мах
A	0.70	0.75	0.80
A1	—	0.02	0.05
b	0.18	0.25	0.30
с	0.18	0.20	0.25
D	3.90	4.00	4.10
D2	2.40	2.50	2.60
E	3.90	4.00	4.10
E2	2.40	2.50	2.60
е	—	0.50	—
h	0.30	0.35	0.40
L	0.35	0.40	0.45
Nd	—	2.50	—
Ne	_	2.50	_

(Original dimensions are in millimeters)

Figure 9-2 QFN24 recommended footprint

(All dimensions are in millimeters)

9.2 Thermal characteristics

Thermal resistance is used to characterize the thermal performance of the package device, which is represented by the Greek letter " Θ ". For semiconductor devices, thermal resistance represents the steady-state temperature rise of the chip junction due to the heat dissipated on the chip surface.

 Θ_{JA} : Thermal resistance, junction-to-ambient.

Θ_{JB}: Thermal resistance, junction-to-board.

 Θ_{JC} : Thermal resistance, junction-to-case.

 Ψ_{JB} : Thermal characterization parameter, junction-to-board.

 Ψ_{JT} : Thermal characterization parameter, junction-to-top center.

 $\Theta_{JA} = (T_J - T_A)/P_D$

 $\Theta_{JB} = (T_J - T_B)/P_D$

 $\Theta_{\text{JC}} = (T_{\text{J}} - T_{\text{C}})/P_{\text{D}}$

Where, T_J = Junction temperature.

T_A = Ambient temperature

 T_B = Board temperature

 T_C = Case temperature which is monitoring on package surface

P_D = Total power dissipation

 Θ_{JA} represents the resistance of the heat flows from the heating junction to ambient air. It is an indicator of package heat dissipation capability. Lower Θ_{JA} can be considerate as better overall thermal performance. Θ_{JA} is generally used to estimate junction temperature.

 $\Theta_{\mbox{\scriptsize JB}}$ is used to measure the heat flow resistance between the chip surface and the PCB board.

 Θ_{JC} represents the thermal resistance between the chip surface and the package top case. Θ_{JC} is mainly used to estimate the heat dissipation of the system (using heat sink or other heat dissipation methods outside the device package).

Symbol	Condition	Package	Value	Unit
Θја	Natural convection, 2S2P PCB	QFN24	47.51	°C/W
Θ _{JB}	Cold plate, 2S2P PCB	QFN24	14.9	°C/W
Θ _{JC}	Cold plate, 2S2P PCB	QFN24	20.99	°C/W
Ψ_{JB}	Natural convection, 2S2P PCB	QFN24	15.05	°C/W
Ψ_{JT}	Natural convection, 2S2P PCB	QFN24	0.86	°C/W

Table 9-2. Package thermal characteristics⁽¹⁾

(1) Thermal characteristics are based on simulation, and meet JEDEC specification.

10 Ordering information

Table 10-1 Part ordering code for GD30WS8815x devices

Ordering Code	Package	Package Type	Temperature Operating Range
GD30WS8815EUTR	QFN24	Green	Industrial -20°C to +85°C

11 Revision history

Table 11-1 Revision history

Revision No.	Description	Date
1.0	Initial	Mar.11, 2022

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2022 GigaDevice – All rights reserved