

GigaDevice Semiconductor Inc.

GD32W51x Secure Boot User Guide

Application Note

AN082

 AN082
GD32W51x Secure Boot User Guide

2

Table of Contents

Table of Contents ... 2

List of Figures .. 3

List of Tables .. 4

1. Secure boot .. 5

1.1. Introduction.. 5

1.2. FLASH layout ... 5

1.3. SRAM layout .. 6

2. Hardware configuration ... 7

2.1. SIP Flash .. 7

2.2. QSPI Flash ... 8

3. Firmware package generation .. 9

3.1. Environment preparation .. 9

3.1.1. Keil uVision ...9

3.1.2. Python ..9

3.1.3. OpenSSL ..9

3.2. Firmware package format ... 9

3.2.1. Factory package ...9

3.2.2. Upgrade package.. 10

3.3. Firmware encapsulation ...11

3.3.1. Encapsulation format .. 11

3.3.2. Key and certificate generation ... 11

3.3.3. Configuration file layout ... 15

3.3.4. Executable program generation... 16

3.3.5. Executable program encapsulation ... 16

3.4. Firmware packaging .. 18

3.4.1. Packaging tool .. 18

3.4.2. Packaging process .. 18

4. Firmware upgrade .. 19

5. Abbreviations ... 20

6. Revision history ... 21

 AN082
GD32W51x Secure Boot User Guide

3

List of Figures

Figure 1-1. Bootloader process ...5

Figure 1-2. FLASH layout ...6

Figure 1-3. SRAM layout ..6

Figure 3-1. Factory firmware package diagram .. 10

Figure 3-2. Upgrade firmware package diagram ... 10

Figure 3-3. Firmware encapsulation format .. 11

Figure 3-4. Generate ROT key pairs .. 12

Figure 3-5. Generate ROT certificate ... 12

Figure 3-6. ROT key contents .. 13

Figure 3-7. Generate the MBL key pairs .. 13

Figure 3-8. Generate the MBL certificate .. 14

Figure 3-9. Generate NSPE key pairs .. 14

Figure 3-10. Generate NSPE certificate ... 15

Figure 3-11. Configuration file layout .. 15

 AN082
GD32W51x Secure Boot User Guide

4

List of Tables

Table 5-1. Abbreviations .. 20

Table 6-1. Revision history .. 21

 AN082
GD32W51x Secure Boot User Guide

5

1. Secure boot

1.1. Introduction

Secure boot ensures the legitimacy and integrity of all code from the time the system runs the

first instruction until it jumps to the main application. There are two key points here: The first

is that the trusted first instruction of the code, the second is that the next executable segment

is integrated and legitimate before the program jumps.

To ensure that the first instruction is always safe, the first executable segment is solidified in

ROM, called immutable bootloader (IBL). When the boot mode is locked as secure boot, the

system will jump to the IBL to run the first instruction no matter whether it is powered on or

restarted. the boot mode cannot be tampered with. So the first instruction gets the root trust.

The second executable segment, placed at the beginning of FLASH, is called mutable

bootloader (MBL). IBL is responsible for verifying the legitimacy and integrity of MBL, and the

program can jump to MBL only after the verification is passed.

Later executable segments can be placed in FLASH or SRAM depending on the user's choice.

If there is no special requirement, it is recommended to run the code in FLASH. The

executable segments loaded later, depending on user selection, include PSA root of trust

(PROT), application root of trust (AROT), and non-secure processing environment (NSPE).

The bootloader process is illustrated in Figure 1-1. Bootloader process, IMAGE is the

combination of PROT, AROT and NSPE. AROT can be customized according to customer

requirements and is empty in the released SDK.

Figure 1-1. Bootloader process

IBL
MBL PROT AROT NSPE

MBL has been validated IMAGE has been validated Initialization complete Initialization complete

Call

service
Call

service

Running

1.2. FLASH layout

FLASH layout is shown in Figure 1-2. FLASH layout. FLASH logical base address is

classified into secure base address (0x0c000000) and non-secure base address

(0x08000000). If the memory space is set to secure attribute, the secure address is used for

access; otherwise, the non-secure address is used for access. In order to understand the

overall layout, the secure base address is taken as an example in Figure 1-2. FLASH layout

to illustrate the distribution of each part.

 AN082
GD32W51x Secure Boot User Guide

6

Figure 1-2. FLASH layout

IMAGE 0

IMAGE 1

Security Data

MBL

System Status

User Data

PROT

AROT

NSPE

System Setting0x0C000000

0x0C008000

0x0C00A000

0x0C1FFFFF

1.3. SRAM layout

SRAM layout is shown in Figure 1-3. SRAM layout. SRAM logical base address is classified

into secure base address (0x30000000) and non-secure base address (0x20000000). If the

memory space is set to secure attribute, the secure address is used for access; otherwise,

the non-secure address is used for access. In the figure, the non-secure base address is used

as an example to illustrate the distribution of the various parts.

Figure 1-3. SRAM layout

AROT used

PROT used

NSPE used

Shared data

MBL used

ROM used0x20000000

0x20000A00

0x2006FFFF

0x20000200

 AN082
GD32W51x Secure Boot User Guide

7

2. Hardware configuration

The EFUSE and Flash option bytes need to be set if the secure boot function is to be enabled.

If it is SIP Flash, EFUSE and Flash option bytes need to be set. If the QSPI Flash is used,

only EFUSE needs to be set.

Burn image-mp.bin, open the serial port tool, and enter commands according to the following

sections to burn necessary parameters.

2.1. SIP Flash

 Boot mode (EFUSE)

- Turn on the security bootloader option

- # efuse set ctl 1

 Set validation options (EFUSE)

- The validation option determines whether or not the ROM validates the MBL

firmware and certificates. If not set, it does not validate and therefore does not truly

enable a secure boot.

- # efuse set tzctl 0xc0

 Set ROTPK（EFUSE）

- ROTPK is used to verify the signature and certificate of the MBL firmware, see Key

and certificate generation for how it is generated, ROTPK in the following

commands can verify the certificates and firmware generated by the released SDK.

After setting BIT2 of tzctl, ROTPK is locked and cannot be rewritten. The ROTPK

data in the following commands is only an example.

- # efuse set rotpk

f0cc01c8a384bdc8694b254f4dd3f8b86a25ae6ca2082c838e780e42c2b157a2

- # efuse set tzctl 4

 Enable Trust Zone（FLASH OP）

- Enable the Trust Zone and set the SPC level to 0. 0xAA indicates that the read

protection level is 0, 0x55 indicates that the read protection level is 0.5, and 0x11

indicates that the read protection level is 1.

- # fmcob set obr 0x80AA

 Set SECMARK（FLASH OP）

- Register SECMARK[0:3] can be used to configure FLASH security zone range. The

command format is as follows:

- fmcob set secmark <index> <start page> <end page>

- The value of index ranges from 0 to 3, the value of [start page, end page] is a secure

space, and the page size is 4KB. According to the user's own FLASH layout, the

Page Index at the end of the PROT firmware should be filled to the end page, and

the space for future PROT upgrade expansion should be reserved. Please refer to

GD32W51x User Manual for detailed definition of SECMARK.

- # fmcob set secmark 0 0 0x39

 AN082
GD32W51x Secure Boot User Guide

8

 Set AESK（EFUSE）

- Optional. When the firmware needs to be encrypted, the firmware encryption key

should be burned. Note that once written, only AESK-encrypted firmware will run

and cannot be returned. The following AESK must be the same as the key used for

generating the firmware package. After setting BIT5 of usctl, the AESK is locked and

cannot be rewritten. The AESK data in the following command is an example only.

- # efuse set aesk 112233445566778899aabbccddeeff00

- # efuse set usctl 0x20

2.2. QSPI Flash

 Boot mode (EFUSE)

- Turn on the security bootloader option

- # efuse set ctl 1

 Set validation options (EFUSE)

- The validation option determines whether or not the ROM validates the MBL

firmware and certificates. If not set, it does not validate and therefore does not truly

enable a secure boot.

- # efuse set tzctl 0xc0

 Set ROTPK (EFUSE)

- ROTPK is used to verify the signature and certificate of the MBL firmware, see Key

and certificate generation for how it is generated, ROTPK in the following

commands can verify the certificates and firmware generated by the released SDK.

After setting BIT2 of tzctl, ROTPK is locked and cannot be rewritten. The ROTPK

data in the following commands is only an example.

- # efuse set rotpk

f0cc01c8a384bdc8694b254f4dd3f8b86a25ae6ca2082c838e780e42c2b157a2

- # efuse set tzctl 4

 Enable Trust Zone (EFUSE)

- # efuse set tzctl 1

 Set AESK（EFUSE）

- Optional. When the firmware needs to be encrypted, the firmware encryption key

should be burned. Note that once written, only AESK-encrypted firmware will run

and cannot be returned. The following AESK must be the same as the key used for

generating the firmware package. After setting BIT5 of usctl, the AESK is locked and

cannot be rewritten. The AESK data in the following command is an example only.

- # efuse set aesk 112233445566778899aabbccddeeff00

- # efuse set usctl 0x20

 AN082
GD32W51x Secure Boot User Guide

9

3. Firmware package generation

3.1. Environment preparation

3.1.1. Keil uVision

To support Arm® Cortex®-M33, please install uVision 5.25 or later.

3.1.2. Python

It is recommended to install Python3. After installing Python3, run the %SDK% \ setup.bat to

automatically install the library used by the firmware encapsulation script. After the installation,

add the Python path to the system environment variable PATH.

3.1.3. OpenSSL

If the operating system is Windows, OpenSSL1.1.1 is recommended. After the installation is

complete, add the OpenSSL path to the system environment variable PATH.

3.2. Firmware package format

Usually there are two kinds of firmware packages, one is the factory package and the other

is the upgrade package.

3.2.1. Factory package

Factory package is the firmware package burned into FLASH when the module is mass-

produced. The contents of the factory package are shown in Figure 1-2. FLASH layout, the

System Status and User Data fields are filled with 0xFF. IMAGE1 stores production test

firmware (image-mp.bin), IMAGE0 stores user firmware (image-all.bin), and Security Data

stores identity data, for example, the device certificate issued by the cloud server.

After burning, jump to production test firmware by default. After the production test is complete,

enter the serial port command to switch to the user firmware. After a simple test, wait for

delivery.

The sample factory package for this application note is based on the released SDK and has

the following features:

 No AROT.

 No Security Data.

 There are two certificates, MBL certificate and NSPE certificate.

 Each executable segment has its own firmware manifest, MBL firmware manifest, PROT

 AN082
GD32W51x Secure Boot User Guide

10

firmware manifest, and NSPE firmware manifest.

The factory package format for this application note example is shown in Figure 3-1. Factory

firmware package diagram. See Encapsulation format for the format of the firmware

manifest.

Figure 3-1. Factory firmware package diagram

Padding with 0xFF

Padding with 0xFF

MBL

Padding with 0xFF

System Setting

PROT

NSPE

PROT

MP NSPE

2M

bytes

IMAGE

0

IMAGE

1

MBL manifest

MBL cert

PROT manifest

NSPE manifest

NSPE cert

3.2.2. Upgrade package

The upgrade package means IMAGE0 or IMAGE1, each firmware update is in IMAGE, and

PROT, AROT and NSPE are updated as a whole. Since the NSPE needs to call the services

provided by PROT and AROT, it needs to link to the NSC libraries provided by both, which

means that if the two are changed, the NSPE must update simultaneously. Considering that

PROT and AROT should be as small as possible and the upgrade process should be as

simple as possible, the three should be combined for unified update. AROT is not included in

the upgrade package for the examples in this application note.

The HTTPS protocol is usually used to download the firmware upgrade package from the

remote service area. Figure 3-2. Upgrade firmware package diagram shows the upgrade

package.

Figure 3-2. Upgrade firmware package diagram

PROT manifest

NSPE manifestIMAGE

HTTP header

Checksum

Packet 1

Packet 2

Packet n

NSPE cert

 AN082
GD32W51x Secure Boot User Guide

11

3.3. Firmware encapsulation

This section describes how each firmware is encapsulated and how the related files are

configured and generated.

3.3.1. Encapsulation format

Take MBL for example, see Figure 3-3. Firmware encapsulation format, the Payload of the

MBL executable is wrapped in the firmware manifest, followed by the certificate.

Figure 3-3. Firmware encapsulation format

IMAGE 0

IMAGE 1

Security Data

MBL

System Status

User Data

System Setting

Header

Payload

Digest

PK Hash

Signature

MBL Certificate

MBL Manifest

Measurement

MBL Payload

3.3.2. Key and certificate generation

Before describing the specific encapsulation, it is important to understand how to generate

key pairs and certificates and which key pairs and certificates are required.

A total of three key pairs need to be generated, which are ROT, MBL and NSPE key pairs.

Three certificates need to be generated, which are ROT certificate, MBL certificate, and NSPE

certificate.

Open the Windows CMD window, switch to the directory “%SDK% \scripts \ images \” where

the key and certificate are saved, and enter the following commands to generate the key pairs

and certificate.

ROT key pairs and certificate

Generate ROT key pairs: penssl req -key rot-key.pem -new -out rot-req.csr

 AN082
GD32W51x Secure Boot User Guide

12

Figure 3-4. Generate ROT key pairs

The PEM password needs to be set, the default for this application note is “12345678”. Then

fill in the certificate request information in turn, and after success, privkey.pem and rot-req.csr

are obtained. privkey.pem is the ROT private key, which is renamed rot-key.pem for the

purpose of differentiation. Since the public key can be inferred from the private key, only the

private key needs to be saved.

> move privkey.pem rot-key.pem

Generate a ROT certificate that signs the MBL certificate

> openssl x509 -req -in rot-req.csr -signkey rot-key.pem -out rot-cert.pem -days 3650

Figure 3-5. Generate ROT certificate

rot-req.csr is a certificate request that is self-signed using rot-key.pem to generate rot-

cert.pem.

Enter the PEM password "12345678" set above, and rot-cert.pem will be generated.

Get ROTPK: > openssl pkey -in rot-key.pem -pubout -out rot-key.txt -text

Use the command above to get rot-key.txt, the contents are shown in Figure 3-6. ROT key

contents, saving the “pub” part is the ROTPK that needs to be burned to EFUSE in the future.

 AN082
GD32W51x Secure Boot User Guide

13

Figure 3-6. ROT key contents

MBL key pairs and certificate

Generate MBL key pairs:> openssl req -newkey ED25519 -new -out mbl-req.csr

Figure 3-7. Generate the MBL key pairs

The privkey.pem and mpl-req.csr will be obtained after running successfully. to differentiate,

here rename privkey.pem to mbl-key.pem.

> move privkey.pem mbl-key.pem

Generate MBL certificate:> openssl x509 -req -in mbl-req.csr -out mbl-cert.pem -signkey mbl-

key.pem -CA rot-cert.pem -CAkey rot-key.pem -CAcreateserial -days 3650

 AN082
GD32W51x Secure Boot User Guide

14

Figure 3-8. Generate the MBL certificate

mbl-cert.pem is generated after the command is successfully run.

NSPE key pairs and certificate

Generate NSPE key pairs: > openssl req -newkey ED25519 -new -out nspe-req.csr

Figure 3-9. Generate NSPE key pairs

The privkey.pem and nspe-req.csr will be obtained after running successfully. to differentiate,

here rename privkey.pem to nspe-key.pem.

> move privkey.pem nspel-key.pem

Generate NSPE certificate: > openssl x509 -req -in nspe-req.csr -out nspe-cert.pem -signkey

nspe-key.pem -CA mbl -cert.pem -CAkey mbl-key.pem -CAcreateserial -days 3650

 AN082
GD32W51x Secure Boot User Guide

15

Figure 3-10. Generate NSPE certificate

nspe-cert.pem is generated after the command is successfully run.

3.3.3. Configuration file layout

The configuration file layout is in %SDK% \ config \ config_gdm32.h, see Figure 3-11.

Configuration file layout. This file is divided into four sections, the first is the base address,

the second is the SRAM layout, the third is the FLASH layout, and the fourth is the firmware

version. Users can configure according to the actual requirements of the project. The line

tagged "Keep unchanged!” cannot be modified because this part is bound to the device

hardware.

This file is used in the compilation, linking, and encapsulation of various executable programs.

That is, changes to the SRAM and FLASH layout only require changes to this file.

Figure 3-11. Configuration file layout

 AN082
GD32W51x Secure Boot User Guide

16

3.3.4. Executable program generation

Open %SDK% \ MultiProject.uvmpw, there are three projects, MBL, PROT and NSPE in order.

After the project has successfully compiled in sequence, the corresponding AXF files, namely

mbl.axf, prot.axf, and nspe.axf, are available in their respective output directories. These three

files are used to convert the corresponding binary file in the following section.

3.3.5. Executable program encapsulation

The goal of each executable package is to generate a binary file or HEX file from the AXF file

that can be downloaded into the FLASH to run. This final file contains the firmware manifest,

the firmware certificate, and, if necessary, the firmware encryption.

The encapsulation process has been implemented in afterbuild scripts, which run

automatically after the link is compiled to generate the encapsulated firmware. So the details

of the encapsulation process is not necessary to be understood in depth, and the contents of

Encapsulation process can be skipped.

Encapsulation script

The %SDK% \ scripts \ imgtool \ directory contains a number of tools written in Python.

 imgtool.py: Adds firmware manifest, firmware certificate to executable binary files

 hextool.py: Convert binary files to Intel HEX for direct download using JLINK.

 aestool.py: AES-CTR encryption for binary files.

 sysset.py: Generates the System Setting binary file sysset.bin.

Encapsulation process

Taking NSPE as an example, the encapsulation process is as follows:

 First, convert the binary BIN file from the AXF file

- > C:\Keil_v5\ARM\ARMCC\bin\fromelf.exe --bin --8x1 --bincombined --

output=.\freertos \nspe.bin .\freertos\output\nspe.axf

 Add the firmware manifest and certificate for nspe.bin

- > python %IMGTOOL% sign --config %CONFIG_FILE% ^

-k %CERT_PATH%\nspe-key.pem ^

-P %KEY_PASSPHRASE% ^

-t "NSPE" ^

--cert %CERT_PATH%\nspe-cert.pem ^

.\freertos\nspe.bin ^

%OUTPUT_IMAGE_PATH%\nspe-sign.bin

- In the command, %CONFIG_FILE% is %SDK%\config\config_gdm32.h. The

firmware version number needs to be added when assembling the firmware header.

- nspe-key.pem is the NSPE private key generated in NSPE key pairs and

certificate used to sign the NSPE firmware.

 AN082
GD32W51x Secure Boot User Guide

17

- “12345678” is the MBL PEM password defined earlier.

- “NSPE” is the type of current firmware, along with “MBL”, “PROT”, and “AROT”.

- nspe-cert.pem is the NSPE certificate generated in NSPE key pairs and certificate.

 Firmware encryption (Optional)

- > python %AESTOOL% --c %CONFIG_FILE% ^

-t "IMG_%INDEX%_NSPE" ^

-i %OUTPUT_IMAGE_PATH%\nspe-sign.bin ^

-o %OUTPUT_IMAGE_PATH%\nspe-sign%AES_SUFFIX%.bin ^

-k %AESK%

- Since the encryption uses the address as the counter, the corresponding executable

start offset address is found from %CONFIG_FILE% according to type

"IMG_%INDEX%_NSPE" as the counter.

- %AESK% is the encryption key and must be the same as the AESK burned to

EFUSE.

 Convert to HEX file (optional, if need to download separately via JLINK).

- > python %HEXTOOL% --c %CONFIG_FILE% ^

-t "IMG_%INDEX%_NSPE" ^

-e %SREC_CAT% ^

%OUTPUT_IMAGE_PATH%\nspe-sign%AES_SUFFIX%.bin ^

%OUTPUT_IMAGE_PATH%\nspe-sign%AES_SUFFIX%.hex

- Use type "IMG_%INDEX%_NSPE" to find the corresponding executable program

start offset address and base address from %CONFIG_FILE% to get the absolute

address where the firmware is stored.

- Pass the absolute address and nspe-sign-aes.bin to %SREC_CAT% (srec_cat.exe)

to generate the Intel HEX file nspe-sign-aes.hex.

Compared to the NSPE encapsulation process, the MBL encapsulation requires an additional

step. This is to generate sysset.bin first and then combine it with mbl.bin to generate mbl-

sys.bin and then do the above.

AfterBuild script

The procedures in the previous section are written out in xxxx_afterbuild.bat in each Project

directory, such as NSPE, and can be implemented through the corresponding

nspe_afterbuild.bat.

When these Projects are compiled using KEIL, the file xxxx_afterbuild.bat will be

automatically executed after compilation to automatically complete the firmware

encapsulation and obtain the corresponding binary file.

 AN082
GD32W51x Secure Boot User Guide

18

3.4. Firmware packaging

3.4.1. Packaging tool

gentool.py: Package the encapsulated firmware together to generate a factory package or

upgrade package.

3.4.2. Packaging process

 Factory package

- python gentool.py --config ..\..\config\config_gdm32.h --sys_set ..\images\mbl-

sys.bin --nspe_0 ..\images\mp-sign.bin --prot_1 ..\images\prot-sign.bin --

nspe_1 ..\images\nspe-sign.bin -o ..\images\image-all-release.bin

- The factory package is not automatically generated. Run the preceding command

in the Windows cmd window to generate the package. Before running the command,

compile all executable program segments of the SDK, copy the mp-sign.bin

obtained after signing the production test firmware released by the original factory

to the %SDK% \ scripts \ images \ directory, then switch the directory in the cmd

window to %SDK% \ scripts \ imgtool \ and run the preceding command.

 Upgrade package

- > python %GENTOOL% --config %CONFIG_FILE% ^

 --prot_0 %OUTPUT_IMAGE_PATH%\prot-sign.bin ^

 --nspe_0 %OUTPUT_IMAGE_PATH%\nspe-sign.bin ^

 -o %OUTPUT_IMAGE_PATH%\image-%VERSION%.bin

The upgrade package is automatically generated using the nspe_afterbuild.bat script.

 AN082
GD32W51x Secure Boot User Guide

19

4. Firmware upgrade

The released SDK provides ota_demo.c, which users can refer to when developing their own

OTA code. This example code assumes that an HTTP server has been set up and the new

firmware has been placed on the server.

Users can change the link address of the directory where the new firmware resides by

modifying the macro DOWNLOAD_URL at the beginning of the file. The new firmware file

name can be passed by calling ota_demo (bin_name).

Perform the following operations to upgrade the device:

1) First, check whether the IMAGE running on the current device is 0 or 1. If the current

IMAGE is 0, the target burn position is 1; otherwise, the target burn position is 0.

2) The device establishes a TCP connection with the HTTP server.

3) The device sends an HTTP Request to the server.

4) The server responds with HTTP response 200 OK and sends the IMAGE firmware in

fragments.

5) After receiving the correct response, the device erases the data of the target burn

location and successively burns the fragment contents into the FLASH.

6) After sending firmware package data, the server sends the checksum of the firmware

package.

7) After receiving the checksum, the device reads the FLASH content of the target burn

position to calculate the checksum and compares it with the received checksum.

8) If the verification passes, the IMAGE’s status of the target burn location is New, and the

IMAGE’s status of the current running location is Old.

9) Reboot.

10) MBL verifies the certificate and signature of the new firmware, and if the verification

passes, jumps to the new firmware to run.

 AN082
GD32W51x Secure Boot User Guide

20

5. Abbreviations

Table 5-1. Abbreviations

Abbreviation Meaning

AROT Application Root of Trust

EFUSE One Time Program memory

IBL Immutable Bootloader

MBL Mutable Bootloader

MP Mass Production

NSPE Non-Secure Processing Environment

OTA Over the Air upgrade

PROT PSA Root of Trust

PSA Platform Security Architecture

ROTPK Root of Trust Public Key

ROM Read-Only Memory

SPC Security Protection

 AN082
GD32W51x Secure Boot User Guide

21

6. Revision history

Table 6-1. Revision history

Revision No. Description Date

1.0 Initial Release Mar.3, 2023

 AN082
GD32W51x Secure Boot User Guide

22

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any

product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and

treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and

treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and

brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but no t

limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability

arising out of the application or use of any Product described in this document. Any information provided in this document is provided

only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality

and safety of any application made of this information and any resulting product. Except for customized products whic h has been

expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business,

industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components

in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control

instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traff ic signal instruments,

life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollu tion

control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury,

death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and sel ling

the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers

shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising

from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it’s suppliers

and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or

death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes,

corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2023 GigaDevice – All rights reserved

	Table of Contents
	List of Figures
	List of Tables
	1. Secure boot
	1.1. Introduction
	1.2. FLASH layout
	1.3. SRAM layout

	2. Hardware configuration
	2.1. SIP Flash
	2.2. QSPI Flash

	3. Firmware package generation
	3.1. Environment preparation
	3.1.1. Keil uVision
	3.1.2. Python
	3.1.3. OpenSSL

	3.2. Firmware package format
	3.2.1. Factory package
	3.2.2. Upgrade package

	3.3. Firmware encapsulation
	3.3.1. Encapsulation format
	3.3.2. Key and certificate generation
	ROT key pairs and certificate
	MBL key pairs and certificate
	NSPE key pairs and certificate

	3.3.3. Configuration file layout
	3.3.4. Executable program generation
	3.3.5. Executable program encapsulation
	Encapsulation script
	Encapsulation process
	AfterBuild script

	3.4. Firmware packaging
	3.4.1. Packaging tool
	3.4.2. Packaging process

	4. Firmware upgrade
	5. Abbreviations
	6. Revision history

