

GigaDevice Semiconductor Inc.

GD32H7xx Series

Software Development Guide

Application Notes

AN111

Version 1.1

(Nov 2024)

AN111
GD32H7xx Series Software Development Guide

1

Table of Contents

Table of Contents ... 1

List of Figures .. 3

List of Tables .. 4

1. Overview ... 5

2. Development of software functions ... 6

2.1. Selection and configuration of Boot modes .. 6

2.2. Instruction of PMU use-related issues ... 7

2.2.1. SMPS initialization configuration .. 7

2.2.2. POR_ON pin ... 7

2.2.3. Programmer link issues in sleep mode ... 8

2.2.4. Pxx pin and Pxx_C pin link issues in standby mode .. 8

2.2.5. Software configuration .. 8

2.3. Instruction of RCU use .. 8

2.4. Monitoring junction temperature .. 9

2.4.1. Two methods for monitoring junction temperature ... 10

2.4.2. Method for monitoring junction temperature with ADC ... 10

2.4.3. JTM alarm function ... 10

2.4.4. Advices for high-temperature and high-speed conditions .. 10

2.5. Use of Secure JTAG .. 10

2.6. Jlink debug issues... 13

2.7. Instruction of cache use.. 13

2.7.1. Data consistency issues when using Dcache and DMA simultaneously 13

2.7.2. Use of cache and data alignment configuration ... 14

2.8. Use of CAN filter .. 15

2.9. Hardfault issue arising from non-aligned access to EXMC SDRAM 16

2.10. Precautions for SAI using DMA burst transfer to send data 18

2.11. Enabling situation of ENET cache .. 18

2.12. Precautions for Bootloader operation .. 20

2.13. Precautions for the Use of USBHS ... 20

2.14. Precautions for the Use of SDIO ... 20

2.14.1. SDIO clock configuration .. 20

2.14.2. SDIO power-on initialization ... 21

2.14.3. Bus width configuration ... 23

AN111
GD32H7xx Series Software Development Guide

2

2.14.4. Accessing eMMC Boot partition data .. 26

2.14.5. MDMA configuration .. 26

2.14.6. IDMA configuration .. 28

3. Revision history ... 29

AN111
GD32H7xx Series Software Development Guide

3

List of Figures

Figure 2-1. Processes of power-on initialization and voltage switch of SD card 22

Figure 2-2. Processes of power-on initialization and voltage switch of eMMC 23

Figure 2-3. Tuning processes of SD card .. 25

Figure 2-4. Flow chart of MDMA controlling the sending of CMD12... 27

Figure 2-5. Flow chart of MDMA controlling RAM data transfer ... 27

AN111
GD32H7xx Series Software Development Guide

4

List of Tables

Table 1-1. Applicable product ... 5

Table 2-1. Selection of Boot mode ... 6

Table 2-2. API for cache operation ... 14

Table 2-3. ARMv7-M address mapping .. 17

Table 2-4. Configuring bus width of SD card .. 24

Table 2-5. Configuring bus speed of SD card ... 24

Table 2-6. Configuring bus mode of eMMC ... 24

Table 2-7. Configuring bus speed of eMMC .. 24

Table 2-8. Accessing partition commands and parameters .. 26

Table 3-1. Revision history .. 29

AN111
GD32H7xx Series Software Development Guide

5

1. Overview

This document is intended for GD32H7xx MCU, introducing how to build and debug

GD32H7xx chip based projects and how to use each module. This application note aims to

give an exemplary introduction to peripheral resources on GD32H7xx MCU so that users can

know how to develop software rapidly with GD32H7xx chips.

Table 1-1. Applicable product

Type Model

MCU GD32H7xx Series

AN111
GD32H7xx Series Software Development Guide

6

2. Development of software functions

2.1. Selection and configuration of Boot modes

GD32H7xx provides different Boot modes whose difference mainly lies in booting location. In

general, it includes secure Boot mode and standard Boot mode.

Secure Boot mode can only be initiated from ROM. For details, please refer to secure storage

management of AN113 GD32H7xx series. After properly configuring option byte or SCR in

Efuse and register in the secure area, users can initiate secure Boot mode. At the next start-

up, SECURITY BOOT will be directly initiated regardless of other Boot-related configurations.

Standard Boot mode allows three Boot modes, including USER BOOT, SRAM BOOT, and

SYSTEM BOOT. Boot mode can be selected through hardware BOOT pin together with Efuse

and option bytes registers. When configuring, EFUSE is superior to option bytes. BOOT pin

is adopted to select Boot address 0/1. When the BOOT pin level is low, the high bit of BOOT

address is defined by BOOT_ADDR0[15:0]. When the BOOT pin level is high, the high bit of

BOOT address is defined by BOOT_ADDR1[15:0]. High-level read protection configured in

standard Boot mode is prohibited in some boot sectors. For details, please refer to the table

below.

Table 2-1. Selection of Boot mode

SCR SPC[7:0]

BOOT_ADDRESS

(configured in

BOOT_ADDRx (x = 0,1))

BOOT mode Boot address

1 x XXXX SECURITY BOOT ROM

0

High

protection

level

0x9000_0000 USER BOOT OSPI0

0x7000_0000 USER BOOT OSPI1

0x0800_0000~max user

flash
USER BOOT BOOT_ADDRESS

other USER BOOT 0x0800_0000

No

protection

level

/

Low

protection

level

0x9000_0000 USER BOOT OSPI0

0x7000_0000 USER BOOT OSPI1

0x2408_0000 ~ max RAM

shared (ITCM/DTCM/AXI)

SRAM BOOT (RAM

shared)
BOOT_ADDRESS

0x2400_0000~ max AXI

SRAM

SRAM BOOT (AXI

SRAM)
BOOT_ADDRESS

0x2000_0000 SRAM BOOT (DTCM) 0x2000_0000

0x0800_0000~max user

flash
USER BOOT BOOT_ADDRESS

0x0000_0000 SRAM BOOT (ITCM) 0x0000_0000

AN111
GD32H7xx Series Software Development Guide

7

SCR SPC[7:0]

BOOT_ADDRESS

(configured in

BOOT_ADDRx (x = 0,1))

BOOT mode Boot address

0x1FF0_0000 SYSTEM BOOT BootLoader

Others

USER BOOT
0X0800_0000 (when the

BOOT pin level is low)

SYSTEM BOOT
BootLoader (When the

BOOT pin level is high)

2.2. Instruction of PMU use-related issues

Power consumption design is one of the most highlighted issues for GD32H7xx products.

GD32H7xx allows the switch mode power supply low dropout regulator (SMPS low dropout

regulator), USB power regulator, power-saving mode, and other features. Instructions are

required for some issues that are worth attention when using specific functions.

2.2.1. SMPS initialization configuration

The SMPS low dropout (LDO) regulator can be used to set the power supply of 0.9 V power

domain. With different configurations, multiple valid power supply modes of 0.9V power

domain can be achieved. Different power supply modes can make the chips more balanced

in performance and power consumption. However, the following issues require attention in

terms of SMPS configuration.

 Configuration of power supply mode must be prior to PLL configuration. PMU in default

status can't drive application of high basic frequency or high load.

 Configuration of power supply mode should match external circuits. For example,

- When the external circuit is solely powered by SMPS, SMPS output is connected to

VCORE to power V0.9V directly. If software configuration is such that LDO is powered

by SMPS and powers V0.9V, SMPS will output 1.8 V or 2.5 V to V0.9V to burn out the

chip.

- When the external circuit is so configured that LDO is powered by SMPS and

powers V0.9V power domain, SMPS output will be connected to VDDLDO to power LDO.

If the power supply mode solely by SMPS is configured for the software, LDO will

be turned off which will cause power outage of V0.9V.

 Some packages don't have SMPS-related pins, so some power supply modes are not

available. However, it is still required to configure LDO power supply mode or bypass

mode before PLL configuration.

2.2.2. POR_ON pin

POR_ON pin should be connected to VDD. Otherwise, after POR is reset, some

registers may not in reset status.

AN111
GD32H7xx Series Software Development Guide

8

2.2.3. Programmer link issues in sleep mode

At present, the chip in sleep mode can not be downloaded or debugged through the

programmer. It should exit from the sleep mode before being downloaded and debugged with

the downloader.

2.2.4. Pxx pin and Pxx_C pin link issues in standby mode

Chips in standby mode can be awoken through the rising edge of WKUP pins. It is worth

attention that WKUP pins of GD32H7xx have simulation input end. In other words, there are

Pxy_C and Pxy pin pairs. When the chip is in standby mode, Pxy_C and Pxy pins will be short

circuited.

2.2.5. Software configuration

To correctly configure the PMU mode, users need to select the correct PMU mode in the

firmware library system_gd32h7xx.c to match the external circuit. For example, given that

users use GD32H759I chip whose external circuit is powered by SMPS&LDO, to properly

configure PMU to obtain 2.5 V SMPS output, users need to uncomment the codes in line 77

"#define SEL_PMU_SMPS_MODE PMU_SMPS_2V5_SUPPLIES_LDO", as shown in the

figure below.

2.3. Instruction of RCU use

Some peripheral clocks can be configured to allow the user to select required clock for

configuration. However, before configuring peripheral clocks, users should ensure that the

corresponding clock is stable and running. For peripheral devices that support clock dynamic

switch, user should ensure that the target clock has been stable before being switched. The

AN111
GD32H7xx Series Software Development Guide

9

configurable peripheral clocks are as below.

1. ADC clock can be obtained by dividing the frequency of PLL1P, PLL2R, CK_PER, or

AHB clock by 2, 4, 6, 8, 10, 12, 14, and 16.

2. The clock of TRNG can be selected as CK_PLL0Q, CK_PLL2P or IRC48M. The TRNG

supports dynamic clock switch.

3. The clock of USART can be selected as CK_APBx (0, 1), CK_AHB, CK_LXTAL or

CK_IRC64MDIV. The USART supports dynamic clock switch.

4. The clock of I2C can be selected as CK_APB1, CK_PLL2R, CK_IRC64MDIV or

CK_LPIRC4M. The I2C supports dynamic clock switch.

5. The clocks of SPI0 (I2S0), SPI1 (I2S1), and SPI2 (I2S2) can be selected as CK_PLL0Q,

CK_PLL1P, CK_PLL2P, I2S_CKIN or CK_PER. The SPI0(I2S0), SPI1(I2S1) and

SPI2(I2S2) support dynamic clock switch.

6. The clocks of SPI3 and SPI4 can be selected as CK_APB2, CK_PLL1Q, CK_PLL2Q,

CK_IRC64MDIV, CK_LPIRC4M or CK_HXTAL. The SPI3/SPI4 supports dynamic clock

switch.

7. The clock of SPI5 (I2S5) can be selected as CK_APB2, CK_PLL1Q, CK_PLL2Q,

CK_IRC64MDIV, CK_LPIRC4M, CK_HXTAL or I2S_CKIN. The SPI5/I2S5 supports

dynamic clock switch.

8. The clock of LPDTS can be selected as CK_APB4 or CK_LXTAL.

9. The clock of CAN can be selected as CK_HXTAL, CK_APB2, CK_APB2/2 or

CK_IRC64MDIV. The CAN supports dynamic clock switch.

10. The clock of RSPDIF can be selected as CCK_PLL0Q, CK_PLL1R, CK_PLL2R or

CK_IRC64MDIV. The RSPDIF supports dynamic clock switch.

11. The clock of SAI2 can be selected as CK_PLL0Q, CK_PLL1P, CK_PLL2P, I2S_CKIN,

CK_PER or CK_RSPDIF_SYMB. The SAI2 supports dynamic clock switch.

12. The clocks of SAI0 and SAI1 can be selected as CK_PLL0Q, CK_PLL1P, CK_PLL2P,

I2S_CKIN or CK_PER. The SAI0 and SAI1 support dynamic clock switch.

13. The clock of HPDF can be selected as CK_AHB or CK_APB2. The HPDF supports

dynamic clock switch.

14. The clock of HPDF_AUDIO can be selected as CK_PLL0Q, CK_PLL1P, CK_PLL2P,

I2S_CKIN or CK_PER.

15. The clock of EXMC can be selected as CK_AHB, CK_PLL0Q, CK_PLL1R or CK_PER.

The EXMC supports dynamic clock switch.

16. The clock of SDIO can be selected as CK_PLL0Q and CK_PLL1R. The SDIO supports

dynamic clock switch.

17. The clock of RTC can be selected as LXTAL clock, IRC32K clock, or HXTAL clocks

divided by 2-63.

2.4. Monitoring junction temperature

During operation of chips, excessively high or low PN junction temperature will lead to

declination of performance or even cause damage to the chips in more serious cases.

AN111
GD32H7xx Series Software Development Guide

10

2.4.1. Two methods for monitoring junction temperature

GD32H7xx can have junction temperature monitored in two ways, including reading the value

of ADC high precision temperature senor or temperature monitor in PMU (JTM alarm function).

2.4.2. Method for monitoring junction temperature with ADC

Real-time junction temperature can be monitored with ADC high precision temperature sensor.

Detailed processes are as below:

1. Configure conversion sequence and sampling time (ts_temp us) of the temperature sensor

channel (ADC2_CH20). For typical value of ts_temp, please refer to the datasheet.

2. Set TSVEN2 bit of ADC_CTL1 register to enable the temperature sensor.

3. Set ADCON bit of ADC_CTL1 register, or externally trigger ADC to convert.

4. Read the temperature sensor data Vtemperature from ADC data register, and calculate the

actual temperature by using the following formula:

Temperature (°C) = {(Vtemperature – V25) / Avg_Slope} + 25

V25: internal temperature sensor output voltage at 25°C. For the typical value, please refer

to the datasheet.

Avg_Slope: Average Slope for curve between Temperature vs. Vtemperature, the typical value

please refer to the datasheet.

2.4.3. JTM alarm function

When VBTMEN bit of PMU_CTL1 register is set, monitoring of temperature threshold will be

initiated. Junction temperature is monitored by comparing high and low temperature

thresholds. TEMPH and TEMPL signs in PMU_CTL1 register can indicate whether the

instrument temperature is higher or lower than the threshold. In addition, TEMPH and TEMPL

wake-up suspension can be used for RTC to trigger signal.

2.4.4. Advices for high-temperature and high-speed conditions

When chips run at high speed or high temperature, it is necessary to monitor junction

temperature and JTM suspension in real time. If they are over thresholds, it is required to

lower clock frequency.

2.5. Use of Secure JTAG

Secure JTAG function is only applicable to JTAG interfaces rather than SWD interfaces. In

addition, the debugging interface is irreversibly switched from SWD interface to JTAG

interface because the switch achieved by modifying EFUSE can't be modified once it is written

into EFUSE.

AN111
GD32H7xx Series Software Development Guide

11

The method of switching SWD debugging interface to normal JTAG interface:

Modify JTAGNSW and NDBG[1:0] bit fields of user control register (EFUSE_USER_CTL)

of EFUSE module to 1 and 00 respectively. After the power supply is reset, only JTAG

interface can be found.

The method of switching SWD debugging interface to secure JTAG interface:

When configuring as secure JTAG interface for debugging, it is required to configure the user

key which should be used for unlocking when this method is used. Modify JTAGNSW and

NDBG bit fields of user control register (EFUSE_USER_CTL) of EFUSE module and

EFUSE_DP0 and EFUSE_DP0 of password register by writing security key into DP0[31:0]

and DP1[31:0] and modifying JTAGNSW to 1 and NDBG[1:0] to 01. After the power supply is

reset, JTAG interface can not be found. In such case, the host computer should send key to

MCU with scripts.

How to use scripts:

First create SecureJTAG.JlinkScript file and copy the contents below to the file:

int InitTarget(void)

{

 int v;

 int v1;

 int v2;

 int v3;

 int v4;

 JLINK_CORESIGHT_Configure("IRPre=0;DRPre=0;IRPost=0;DRPost=0;IRLenDevice=5");

 JLINK_JTAG_Reset();

 JLINK_JTAG_WriteIR(0x15);

 JLINK_JTAG_StartDR();

 JLINK_JTAG_WriteDRCont(0xffffffff, 32);

 JLINK_SYS_Report("Writting secure jtag key1...................................");

 JLINK_JTAG_WriteDREnd(0x11223344, 32);

 JLINK_JTAG_WriteIR(0x16);

 JLINK_JTAG_StartDR();

 JLINK_JTAG_WriteDRCont(0xffffffff, 32);

 JLINK_SYS_Report("Writting secure jtag key2...................................");

 JLINK_JTAG_WriteDREnd(0x55667788, 32);

 JLINK_JTAG_WriteIR(0x18);

 JLINK_JTAG_StartDR();

 JLINK_SYS_Report("Reading secure jtag key1...................................");

AN111
GD32H7xx Series Software Development Guide

12

 JLINK_JTAG_WriteDREnd(0xffffffff, 32);

 v1 = JLINK_JTAG_GetU32(0);

 JLINK_SYS_Report1("secure jtag key1:", v1);

 JLINK_JTAG_WriteIR(0x19);

 JLINK_JTAG_StartDR();

 JLINK_SYS_Report("Reading secure jtag key2...................................");

 JLINK_JTAG_WriteDREnd(0xffffffff, 32);

 v2 = JLINK_JTAG_GetU32(0);

 JLINK_SYS_Report1("secure jtag key2:", v2);

 JLINK_JTAG_WriteIR(0x1e);

 JLINK_JTAG_StartDR();

 JLINK_SYS_Report("Reading boundary scan ID...................................");

 JLINK_JTAG_WriteDREnd(0xffffffff, 32);

 v3 = JLINK_JTAG_GetU32(0);

 JLINK_SYS_Report1("boundary scan ID:", v3);

 JLINK_JTAG_WriteIR(0x1a);

 JLINK_JTAG_StartDR();

 JLINK_SYS_Report("Reading secure jtag state...................................");

 JLINK_JTAG_WriteDREnd(0xffffffff, 32);

 v4 = JLINK_JTAG_GetU32(0);

 JLINK_SYS_Report1("secure jtag state:", v4);

 return 0;

}

0X11223344 in the file is the value written into DP0[31:0] when users set the key.

0X55667788 is the value written into DP1[31:0] when users set the key. 0x15 and 0x16

commands in the file represent commands of writing keys. 0x18 and 0x19 commands

represent reading written keys. 0X1e command represents reading mcu device ID. 0X1a

command represents reading the status of secure jtag and wrong_seq signs.

Then create secure JTAG.bat file in the same path as that of SecureJTAG1.JlinkScript and

copy the contents below to the file:

PATH=%PATH%;D:\Keil_v528\ARM\Segger;

jlink.exe -JLinkScriptFile SecureJTAG1.JlinkScript -device Cortex-M7 -if JTAG -speed 100 -

autoconnect 1 -JTAGConf -1,-1

pause

D:\Keil_v528\ARM\Segger is the directory of jlink.exe.

Finally, execute secureJTAG.bat and JTAG debugging is unlocked and ready to use.

Note:

AN111
GD32H7xx Series Software Development Guide

13

1. If the password is entered in error, it is required to reset the power supply.

2. If there is any error in entering the sequence, it is required to reset the power supply for

decryption.

3. Entering correct password to open debugging only applies to SPC_L or below. ROM, RAM

secure access mode, and SPC_H would not be opened through this operation.

2.6. Jlink debug issues

When debugging GD32H7XX chips with KEIL IDE, if address memory interface driven by

EXMC is initiated in the course, KEIL IDE will be stuck when the interface is opened again

and it is required to reset window settings.

2.7. Instruction of cache use

2.7.1. Data consistency issues when using Dcache and DMA simultaneously

GD32H7xx provides high-speed cache that allows read assignment. When cache is not hit,

data will be assigned with high-speed cache lines and 32-byte data is saved from the master

storage to the cache. Subsequently, when accessing these master storage addresses, cache

will be hit to read the data directly. When cache is enabled on SRAM, there will be some

consistency-related issues when CPU and DMA access SRAM simultaneously.

CPU reads the data DMA writes into SRAM.

When DMA reads data from peripheral and updates into the receive buffer destination[] in

SRAM, CPU attempts to read the data in destination[]. It will read the existing data in cache

rather than new data in SRAM.

Solutions are as below:

1. After DMA receives data, conduct invalid operation on destination[] in cache. destination[]

in cache will be invalid through the operation below. When CPU attempts to read

destination[], cache will not be hit.

2. To ensure that cache line margins are aligned, destination[] must be 32 bytes aligned.

DMA reads the data CPU writes into SRAM.

When CPU is updating the data to be transmitted in the transmit buffer welcome[], it will

update the data in cache only rather than the data in SRAM. When DMA reads the data in

welcome[], it will read the data from SRAM rather than new data in cache updated by CPU.

Solutions are as below:

AN111
GD32H7xx Series Software Development Guide

14

1. Before initiating DMA transmission, it is required to clear cache and refresh welcome[] in

cache to SRAM.

2. The address saved in welcome[] must be 32 bytes aligned.

2.7.2. Use of cache and data alignment configuration

The table below lists some ARM CMSIS Dcache operating functions recommended on the

official website.

Table 2-2. API for cache operation

API for cache operation Description

void SCB_EnableDCache (void)
After invalidating the whole data cache,

enable data cache.

void SCB_DisableDCache (void)
After cleaning the whole data cache, disable

data cache.

void SCB_CleanDCache(void) Clean the whole data cache.

void SCB_CleanDCache_by_Addr (uint32_t *addr,

int32_t dsize)
Clean data cache lines by address.

void SCB_InvalidateDCache(void) Invalidate the whole data cache.

void SCB_InvalidateDCache_by_Addr (uint32_t *

addr, int32_t dsize)
Invalidate data cache lines by address.

void SCB_CleanInvalidateDCache(void) Clean and invalidate the whole data cache.

void

SCB_CleanInvalidateDCache_by_Addr(uint32_t

*addr, int32_t dsize)

Clean and invalidate data cache lines by

address.

Note: Since the data cache line has 32 bytes and the cache is read and written in lines, addr

must have 32 bytes with margin aligned and dsize must be an integer multiple of 32 bytes.

Cleaning cache aims to forcibly write lines marked as dirty (rewritten) in cache to SRAM, clean

the sign of dirty lines, and rebuild consistency between cache and SRAM. This avoids failing

to timely capture the latest data in cache when SRAM is read by DMA.

Invalidating cache aims to invalidate cache lines by clearing the significant bit in cache lines

only rather than clearing the data in cache lines. This avoids CPU from capturing data in

cache instead of the latest data after SRAM data is updated.

In addition, to avoid consistency issues, the Memory Protection Unit (MPU) can be used to

define SRAM area shared by CPU and DMA as not using the data cache but keep SRAM

which can only be accessed by CPU using the data cache. For this method, please refer to

AN111
GD32H7xx Series Software Development Guide

15

MPU configuration use document of ARM.

2.8. Use of CAN filter

The CAN bus controller is integrated with a flexibly configured mailbox system for sending

and receiving CAN frame. The mailbox system consists of one set of mailboxes (maximumly

32 mailboxes) for storing control data, time stamps, message identifiers, and message data.

Each CAN controller has 512-byte RAM space for configuration of mailbox or FIFO descriptor.

When receive FIFO is enabled in CAN, the RAM space occupied by the mailbox will be used

for receiving FIFO descriptors. With the identifier filtering function, the receive FIFO can

maximumly filter 104 extended identifiers, 208 standard identifiers, or 8 bits of 416 identifiers.

Maximum 32 identifier filtering table elements can be configured through the private filtering

register of receive FIFO/mailbox.

When Rx FIFO is disabled:

 If RPFQEN bit of CAN_CTL0 register is 0, then CAN_RMPUBF register is used for all

receive mailboxes.

 If RPFQEN bit of CAN_CTL0 register is 1, then CAN_RFIFOMPFx (x = 0..31) register is

used for receive mailboxes individually.

When Rx FIFO is enabled:

 If RPFQEN bit of CAN_CTL0 register is 0, then CAN_RMPUBF register is used for all

receive mailboxes, and CAN_RFIFOPUBF and CAN_RFIFOMPFx (x = 0..31) registers

are used to configure all Rx FIFO identifier filtering table elements. Values of all these

registers must be configured the same.

 If RPFQEN bit of CAN_CTL0 register is 1, then CAN_RFIFOMPFx (x=0..31) register is

used to configure Rx FIFO identifier filtering table elements set by RFFN[3:0] bit field of

CAN_CTL2 register and receive mailboxes (as descriptors of receive mailboxes and Rx

FIFO can not occupy RAM of the same area at the same time, a set of registers are used

to configure filtering data under separate control), and CAN_RFIFOPUBF register is

used to configure all remaining Rx FIFO identifier filtering table elements.

Configuration of the number of Rx FIFO identifier filtering table elements is as listed in the

table below:

RFFN[3:0]

Number of Rx

FIFO identifier

filtering table

elements

Space occupied by Rx

FIFO
Mailbox available

0000 8 Mailbox descriptor 0 - 7 Mailbox 8- 31

0001 16 Mailbox descriptor 0 - 9 Mailbox 10- 31

0002 24 Mailbox descriptor 0 - 11 Mailbox 12- 31

0003 32 Mailbox descriptor 0 - 13 Mailbox 14- 31

0004 40 Mailbox descriptor 0 - 15 Mailbox 16- 31

AN111
GD32H7xx Series Software Development Guide

16

RFFN[3:0]

Number of Rx

FIFO identifier

filtering table

elements

Space occupied by Rx

FIFO
Mailbox available

0005 48 Mailbox descriptor 0 - 17 Mailbox 18- 31

0006 56 Mailbox descriptor 0– 19 Mailbox 20- 31

0007 64 Mailbox descriptor 0– 21 Mailbox 22- 31

0008 72 Mailbox descriptor 0– 23 Mailbox 24- 31

0009 80 Mailbox descriptor 0– 25 Mailbox 26- 31

000A 88 Mailbox descriptor 0– 27 Mailbox 28- 31

000B 96 Mailbox descriptor 0– 29 Mailbox 30- 31

000C 104 Mailbox descriptor 0– 31 None

Others 104 Mailbox descriptor 0 - 31 None

By taking RFFN[3:0] = 3 as an example, at this time, the number of Rx FIFO identifier filtering

table elements is 32, the space of mailbox descriptor 0-13 is occupied by FIFO descriptor,

and the remaining mailboxes14-31 can be used for sending and receiving for mailbox. There

are three formats for Rx FIFO identifier filtering table elements, which can be configured by

FS[1:0] bit field of CAN_CTL0 register. When FS[1:0] is 0, Rx FIFO identifier filtering table

elements are in format A and allow maximum 32 complete standard or extended identifiers.

When FS[1:0] is 1, they are in format B and allow maximum 64 complete standard or 14 bits

of extended identifiers. When FS[1:0] is 2, they are in format C and allow maximum 128

complete standard or 8 bits of extended identifiers.

Configuration of the format of Rx FIFO identifier filtering table elements is as below:

The Rx FIFO identifier filtering table elements configured in format B allows 64 complete

standard or 14 bits of extended identifiers.

Because FS[1:0] is 3 and mailboxes 0-13 are occupied by FIFO, private filters 0-13 of receive

FIFO/mailbox are used to receive and filter FIFO. The code configuration is as below:

2.9. Hardfault issue arising from non-aligned access to EXMC

SDRAM

In default situation, when access property of SDRAM has not been modified, hardfault will

occur when accessing SDRAM in non-aligned way for 0xC0000000-0xDFFFFFFF defaults to

device type and does not allow non-aligned access. For details, please refer to the table below.

AN111
GD32H7xx Series Software Development Guide

17

Table2-3. ARMv7-M address mapping

Address Name RAM type (s) XN Cache Description/ supported storage

0xE0000000-

0xFFFFFFFF
System

Device & Strongly

Ordered
XN -

Vendor system region

(VENDOR_SYS)

Private Peripheral Bus (PPB)

0xC0000000-

0xDFFFFFFF
Device Device XN - Non-shareable memory

0xA0000000-

0xBFFFFFFF
Device Device, Shareable XN - Shareable memory

0x80000000-

0x9FFFFFFF
RAM Normal - WT Memory with WT cache attributes

0x60000000-

0x7FFFFFFF
RAM Normal - WBWA Write-back, Write-allocate L2/L3

0x40000000-

0x5FFFFFFF
Peripheral Device XN - On-chip peripheral address space

0x20000000-

0x3FFFFFFF
SRAM Normal - WBWA

SRAM

On-chip RAM

0x00000000-

0x1FFFFFFF
Code Normal - WT

ROM

Flash Memory

To access SDRAM in non-aligned way, it is required to modify the type of the address space

where SDRAM is located with MPU, like the same type as that of RAM. For example, users

can configure Write Through property for 0xC0000000.

 mpu_region_init_struct mpu_init_struct;

 mpu_region_struct_para_init(&mpu_init_struct);

 /* disable the MPU */

 ARM_MPU_Disable();

 ARM_MPU_SetRegion(0, 0);

 /* configure the MPU attributes for SDRAM */

 mpu_init_struct.region_base_address = 0xC0000000;

 mpu_init_struct.region_size = MPU_REGION_SIZE_32MB;

 mpu_init_struct.access_permission = MPU_AP_FULL_ACCESS;

 mpu_init_struct.access_bufferable = MPU_ACCESS_NON_BUFFERABLE;

 mpu_init_struct.access_cacheable = MPU_ACCESS_CACHEABLE;

 mpu_init_struct.access_shareable = MPU_ACCESS_NON_SHAREABLE;

 mpu_init_struct.region_number = MPU_REGION_NUMBER0;

 mpu_init_struct.subregion_disable = MPU_SUBREGION_ENABLE;

 mpu_init_struct.instruction_exec = MPU_INSTRUCTION_EXEC_PERMIT;

 mpu_init_struct.tex_type = MPU_TEX_TYPE0;

 mpu_region_config(&mpu_init_struct);

 mpu_region_enable();

AN111
GD32H7xx Series Software Development Guide

18

 /* enable the MPU */

 ARM_MPU_Enable(MPU_MODE_PRIV_DEFAULT);

2.10. Precautions for SAI using DMA burst transfer to send data

Each audio sub-module of GD32H7xx SAI has an 8-byte FIFO and DMA interface. Enabling

DMA access is configured with DMA enable bit (DMAEN) of SAI_BxCFG0 register. DMA

request and FIFO request (FFREQ) are generated together. The generation status of FIFO

request depends on FIFO threshold (FFTH) and FIFO status (FFSTAT), which is important

when using DMA burst transfer.

The table below lists the recommended relationship between DMA burst transfer and SAI

FIFO threshold.

DMA transfer width DMA burst transfer type SAI data width SAI FIFO threshold

16

Single

16

Empty, 1/4 full, half-full, or 3/4 full

4-beat incremental burst

transfer
Empty or 1/4 full

32

Single

32

Empty, 1/4 full, half-full, or 3/4 full

4-beat incremental burst

transfer
Empty or 1/4 full

When the audio sub-module is configured in transmitting mode, FIFO threshold must be set

as a designated value to ensure that there is enough remaining space to achieve a complete

DMA burst writing in the worst situation. Otherwise, FIFO overflow error might happen. When

the audio sub-module is configured in receiving mode, FIFO threshold must be set as a

designated value to ensure that there is enough remaining space to achieve a complete DMA

burst reading in the worst situation to prevent FIFO underflow error.

2.11. Enabling situation of ENET cache

ENET module uses DMA mechanism while cache of ENET module is enabled. Due to high

data traffic, ENET module will update RAM through DMA rapidly, which may lead to

inconsistency between the data captured by DMA and the data in cache.

Therefore, we first need to specify the address of the relevant memory area, including the

ENET RxDMA /TxDMA descriptor, LWIP RAM heap, and transmit / receive buffer.

AN111
GD32H7xx Series Software Development Guide

19

In addition, we need to set cache access permit of the RAM area in use with MPU module

as no buffer and no cache to ensure real-time property and accuracy of data.

At the same time, it is required to select the set RAM area in related project settings.

Otherwise, the above configuration will be invalid.

AN111
GD32H7xx Series Software Development Guide

20

2.12. Precautions for Bootloader operation

For details, please refer to Precautions for AN126_GD32H7xx_BootLoader Operations.

2.13. Precautions for the Use of USBHS

For details, please refer to Precautions for the Use of USBHS of AN117 GD32H7xx Series.

2.14. Precautions for the Use of SDIO

2.14.1. SDIO clock configuration

CK_SDIO is a kernel clock of SDIO module. SDIO_CLK provided to SD/eMMC card is

obtained through frequency division of the clock. When configuring CK_SDIO through RCU,

it is recommended to configure the frequency of the working clock CK_SDIO to up to 208

Mhz.

When configuring AF function with pins, it is recommended to modify GPIOx_AFSELx(x=0, 1)

first and then switching GPIO mode into AF.

AN111
GD32H7xx Series Software Development Guide

21

2.14.2. SDIO power-on initialization

Power-on initialization and voltage switch of UHS-I SD card

SD 3.0 card allows UHS-I (Ultra High Speed Bus Speed Mode phase I) speed mode, including

SDR12, SDR25, SDR50, SDR104, and DDR50. The card works in UHS-I at 1.8 V while the

card is powered on at 3.3 V, so UHS-I mode allows the voltage switch from 3.3 V to 1.8 V.

When the voltage switch sequence is completed successfully, SDR12 card will enter into

UHS-I mode by default.

Power-on initialization of the card and capture of card status and information can be

completed for cards that can work in UHS-I. When responding to ACMD41, the card will reply

with the support of 1.8 V voltage switch and then proceed with 1.8 V voltage switch operation.

Main processes are shown in the figure below. In addition, please note that SDIO0 can work

in UHS-I but SDIO1 can not work in UHS-I. In other words, SDIO1 can not generate the chip

signal to control external voltage switch.

AN111
GD32H7xx Series Software Development Guide

22

Figure 2-1. Processes of power-on initialization and voltage switch of SD card

Power on (3.3 V)

SDIO_CLK <= 400 kHz

CMD0+arg(0x00)

Reset the device to the idle status

CMD8+arg(0x000001AA)

Obtain the card status and check the

card version

ACMD41+arg(0xC1100000)

Card capacity type, voltage support

information

High-capacity card?

Does the card support

UHS-I and 1.8 V?

CMD11+arg(0x00)

Voltage switching

CMD2+arg(0x00)

Read the CID register of the card

CMD3+arg(0x00)

Assign an RCA address

CMD9+arg(RCA<<16) Read the

CID register of the card

CMD7+arg(RCA<<16) Select a

card

N

Y

Y

N

Set the voltage switching enable bit

Send CMD11 to the card

Wait until the clock stop position bit

Clear the clock stop bit

Switch the hardware enable voltage to 1.8 V

Wait until the voltage switching completion

flag setting bit

Clear the voltage switching enable and

end bits

Confirm that the data0 line of the card is

pulled down

(Card busy signal)

Confirm that the data0 line of the card is

pulled up

(Card ready signal)

Power-on initialization of eMMC

Power-on processes of eMMC are shown in the figure below. First, the host determines

whether eMMC can work at 1.8 V with OCR register, and then the host will select 1.8 V to

power on eMMC again.

AN111
GD32H7xx Series Software Development Guide

23

Figure 2-2. Processes of power-on initialization and voltage switch of eMMC

Power on (3.3 V)

SDIO_CLK <= 400 kHz

CMD0+arg(0x00)

Reset the device to the idle

status

CMD1+arg(0x40FF8000)

Response(bit31==1)?

Ready?

CMD2+arg(0x00)

Read the CID register of the card

CMD3+arg(0x00)

Send an RCA address

CMD9+arg(RCA<<16)

Read the CSD register of the card

CMD7+arg(RCA<<16) Select a

device

Y

N

Response(bit7==1)?

Is dual voltage supported?

Y Power off and

power on at 1.8 V

again

CMD1+arg(0x40FF8080)

Response(bit31==1)?

Ready?

Y N

CMD8+arg(0x00)

Read the EXT_CSD register

N

2.14.3. Bus width configuration

When the host sends a command to set device bus speed, it is required to change the width,

speed mode, and DDR of the host after 64 byte-data is received.

After power-on initialization of SD card is completed, configuration of bus width and speed

can be done by sending commands according to the table below. Please note that 1-bit bus

is not allowed in UHS-I mode.

AN111
GD32H7xx Series Software Development Guide

24

Table 2-4. Configuring bus width of SD card

Selected width Command Parameters

1bit
ACMD6

0x00

4bit 0x02

Table2-5. Configuring bus speed of SD card

Selected speed mode Voltage/V Command Parameters

SDR12 1.8

CMD6

0x80FFFF00

SDR25 1.8 0x80FFFF01

SDR50 1.8 0x80FF1F02

SDR104 1.8 0x80FF1F03

DDR50 1.8 0x80FF1F04

After power-on initialization of eMMC is completed, configuration of bus width and speed can

be done by sending commands according to the table below.

Table2-6. Configuring bus mode of eMMC

Selected width Command Parameters

1BIT SDR

CMD6

0x03B70000

4BIT SDR 0x03B70100

8BIT SDR 0x03B70200

4BIT DDR 0x03B70500

8BIT DDR 0x03B70600

Table2-7. Configuring bus speed of eMMC

Selected speed mode Voltage/V Command Parameters

DS 1.8/3.3

CMD6

0x03B90000

HS 1.8/3.3 0x03B90100

HS200 1.8 0x03B90200

High-speed bus tuning of SD card

When SDR50 and SDR104 that can work in UHS-I is in bus speed mode, CPDM module can

be used for tuning of sampling points of receiving data. After CPDM is used, it is required to

disable hardware flow control. Before sending CMD19 for tuning, it is required to configure

delay line length with CPDM.

Reference codes for configuring delay line length with CPDM are as below.

AN111
GD32H7xx Series Software Development Guide

25

Figure 2-3. Tuning processes of SD card

Configure DSM

Set the bus width, data direction, and data

length

CPDM enable

Delay line sampling module enable

Configure the CPDM_CFG register

Send CMD19

Receive and wait until the completion of

data transmission

i++;

i<12?

Configure DSM, and set the data length to

64 bytes and the data direction to read

from the card

CPSEL[3:0]=i;

CPDM enable

Delay line sampling module enable

Compare whether the received data is totally

the same as the data of tuning block pattern

Select SDIO_FB_CLK as the receiving clock

Disable hardware flow control of SDIO

Tuning is correctly finished

Tuning fails

Y

N

Y

N

AN111
GD32H7xx Series Software Development Guide

26

2.14.4. Accessing eMMC Boot partition data

eMMC has two Boot partitions in the same size, which is obtained by calculating EXT_CSD

register according to the calculation formula EXT_CSD[226]*128K byte. EXT_CSD register

is obtained by the host sending CMD8. Data reading and writing in Boot partition is the same

as that in other partitions, but before sending reading and writing commands, the host should

send CMD6 access to Boot partition. Detailed command is listed in the table below. The data

written into Boot partition can be read automatically upon power-on initialization. Detailed

operations are conducted according to protocols. Configuration of reading content bus of Boot

partition is also required to be done according to protocols beforehand.

Table2-8. Accessing partition commands and parameters

Switched partition Command Parameters

User partition

CMD6

0x03B30000

Boot partition 1 0x03B30100

Boot partition 2 0x03B30200

2.14.5. MDMA configuration

Controlling SDIO transfer process with MDMA

When MDMA is not used, CPU will control SDIO transfer process. For example, after

transferring multiple blocks of data, send CMD12 stop command. After one dual-buffer

transfer in buffer is done, modify buffer address configuration in IDMA.

If MDMA is used, it can control SDIO transfer in place of CPU in three time periods, including

the end of data transfer (SDIO_DATA_END), the end of command sequence

(SDIO_CMD_END), and the end of buffer transfer (SDIO_BUF_END). When MDMA is

triggered at these moments, it will transfer pre-configured static data to SDIO register to

achieve SDIO control.

The flow chart below shows the example of MDMA controlling the sending of CMD12 after

SDIO transfers multiple blocks of data.

AN111
GD32H7xx Series Software Development Guide

27

Figure 2-4. Flow chart of MDMA controlling the sending of CMD12

Finish SDIO interface initialization and
SD card initialization

Put the SDIO_CMDCTL static configuration value of
SDIO (0x110C, control the sending of CMD12) in the

stop_reg variable

Configure the MDMA triggering source as
SDIO_DATA_END, the MDMA data source as
stop_reg, and the MDMA target source as the

register SDIO_CMDCTL of SDIO

Configure and enable SDIO multiple block
data transmission

After data transmission is completed, trigger
MDMA by SDIO_DATA_END to send static

data to the SDIO register so that CMD12 stops
sending commands

In addition, MDMA supports the linked list, so it is possible to conduct transfer control on SDIO

for many times with multi-node linked list.

Transferring data to DTCM/ITCM with MDMA

The figure below is an example of using SDIO and MDMA at the same time. It aims to

configure SDIO_DATA_END as a source to trigger MDMA to transfer SD card data to ITCM.

Figure 2-5. Flow chart of MDMA controlling RAM data transfer

Finish SDIO interface initialization and

SD card initialization

Configure the MDMA triggering source as

SDIO_DATA_END, the MDMA data

source as AXI SRAM, and the data target

as ITCM RAM

Configure SDIO transmission and read SD

data to AXI SARM. Trigger MDMA to send

data to ITCM RAM

AN111
GD32H7xx Series Software Development Guide

28

2.14.6. IDMA configuration

There is DMA (IDMA) in SDIO which supports single buffer transfer and dual buffer transfer.

In single buffer transfer mode, it is only required to configure SDIO register SDIO_IDMACTL

in single buffer mode and enable IDMA before transfer so that single buffer transfer can be

achieved with IDMA.

In dual buffer transfer mode, SDIO will read or write data in two buffers in turn. When SDIO

is using one buffer, CPU can read or write data in the other buffer. It is required to configure

SDIO register SDIO_IDMACTL in dual buffer mode and enable IDMA, configure

SDIO_IDMASIZE as the buffer size, configure SDIO_IDMAADDR0 and SDIO_IDMAADDR1

as the addresses of the two external buffers, and choose to enable IDMAEND interruption.

By enabling SDIO data transfer, SDIO will access two buffers in turn. When transfer is done

in one buffer, IDMAEND interruption will be triggered, and CPU can access the other buffer

that is not used by SDIO by judging it according to BUFSEL in SDIO_IDMACTL.

AN111
GD32H7xx Series Software Development Guide

29

3. Revision history

Table 3-1. Revision history

Revision No. Description Date

1.0 Initial release May 9, 2023

1.1
Modify descriptions in SMPS

initialization configuration.
Nov 15, 2024

AN111
GD32H7xx Series Software Development Guide

30

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any

product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and

treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and

treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and

brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability

arising out of the application or use of any Product described in this document. Any information provided in this document is provided

only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality

and safety of any application made of this information and any resulting product. Except for customized products which have been

expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business,

industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components

in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control

instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments,

life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution

control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury,

death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling

the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers

shall and hereby do release the Company as well as its suppliers and/or distributors from any claim, damage, or other liability arising

from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as its suppliers and/or

distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death,

arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes,

corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2024 GigaDevice – All rights reserved

	Table of Contents
	List of Figures
	List of Tables
	1. Overview
	2. Development of software functions
	2.1. Selection and configuration of Boot modes
	2.2. Instruction of PMU use-related issues
	2.2.1. SMPS initialization configuration
	2.2.2. POR_ON pin
	2.2.3. Programmer link issues in sleep mode
	2.2.4. Pxx pin and Pxx_C pin link issues in standby mode
	2.2.5. Software configuration

	2.3. Instruction of RCU use
	2.4. Monitoring junction temperature
	2.4.1. Two methods for monitoring junction temperature
	2.4.2. Method for monitoring junction temperature with ADC
	2.4.3. JTM alarm function
	2.4.4. Advices for high-temperature and high-speed conditions

	2.5. Use of Secure JTAG
	2.6. Jlink debug issues
	2.7. Instruction of cache use
	2.7.1. Data consistency issues when using Dcache and DMA simultaneously
	2.7.2. Use of cache and data alignment configuration

	2.8. Use of CAN filter
	2.9. Hardfault issue arising from non-aligned access to EXMC SDRAM
	2.10. Precautions for SAI using DMA burst transfer to send data
	2.11. Enabling situation of ENET cache
	2.12. Precautions for Bootloader operation
	2.13. Precautions for the Use of USBHS
	2.14. Precautions for the Use of SDIO
	2.14.1. SDIO clock configuration
	2.14.2. SDIO power-on initialization
	Power-on initialization and voltage switch of UHS-I SD card
	Power-on initialization of eMMC

	2.14.3. Bus width configuration
	High-speed bus tuning of SD card

	2.14.4. Accessing eMMC Boot partition data
	2.14.5. MDMA configuration
	Controlling SDIO transfer process with MDMA
	Transferring data to DTCM/ITCM with MDMA

	2.14.6. IDMA configuration

	3. Revision history

