GigaDevice Semiconductor Inc.

Migration guide from GD32F4 Series to GD32H7 Series

Application Notes AN112

Version 1.0

(April 2023)

Table of Contents

Tabl	of Contents	2
List	Tables	3
1. F	reword	4
2. 8	stem architecture	5
3. F	n compatibility	6
4. I	ernal resource compatibility	8
5. C	fferences of peripheral devices1	0
5.1	Power management unit (PMU)1	0
5.2	Resetting and clock unit (RCU)	11
5.3	General purpose and alternate function input/ output interface (GPIO and AFIO)	13
5.4	Direct memory access controller (DMA)1	14
5.5	Debugging (DBG)1	15
5.6	Analog-to-digital converter (ADC)1	15
5.7	Digital-to-analog converter (DAC) 1	15
5.8	Real-time clock (RTC)1	16
5.9	Timer (TIMER)1	16
5.1	Universal synchronous/asynchronous receiver/transmitter (USART) 1	8
5.1	Inter-integrated circuit (I2C) bus interface1	19
5.1	Serial peripheral interface/inter-IC sound interface (SPI/I2S)2	20
5.1	Digital camera interface (DCI)2	21
5.1	SDIO interface (SDIO)2	22
5.1	Controller area network (CAN)2	<u>23</u>
5.1	Universal serial bus high-speed interface (USBHS)2	24
5.1	Flash memory controller (FMC)2	26
5.1	External memory controller (EXMC)2	27
5.1	Image processing accelerator (IPA)2	28
6. F	vision history2	29

List of Tables

Table 1-1. Application series list 4
Table 3-1. Differences in packages of GD32F4xx series and GD32H7xx series
Table 3-2. Differences in pin configuration of GD32F4xx series and GD32H7xx series (LQFP144) 6
Table 3-3. Differences in pin configuration of GD32F4xx series and GD32H7xx series (LQFP100) 6
Table 4-1. Overview of internal resource comparison between GD32F4xx series and GD32H7xx series
Table 5-1. Differences in PMU specifications of GD32F4xx series and GD32H7xx series 10
Table 5-2. Differences in RCU specifications of GD32F4xx series and GD32H7xx series11
Table 5-3. Differences in GPIO specifications of GD32F4xx series and GD32H7xx series 13
Table 5-4. Differences in DMA specifications of GD32F4xx series and GD32H7xx series 14
Table 5-5. Differences in ADC specifications of GD32F4xx series and GD32H7xx series 15
Table 5-6. Differences in RTC specifications of GD32F4xx series and GD32H7xx series 16
Table 5-7. Differences in TIMER specifications of GD32F4xx series and GD32H7xx series 16
Table 5-8. Differences in USART specifications of GD32F4xx series and GD32H7xx series 18
Table 5-9. Differences in I2C specifications of GD32F4xx series and GD32H7xx series 19
Table 5-10. Differences in SPI specifications of GD32F4xx series and GD32H7xx series 20
Table 5-11. Differences in I2S specifications of GD32F4xx series and GD32H7xx series
Table 5-12. Differences in DCI specifications of GD32F4xx series and GD32H7xx series 21
Table 5-13. Differences in SDIO specifications of GD32F4xx series and GD32H7xx series 22
Table 5-14. Differences in CAN specifications of GD32F4xx series and GD32H7xx series 23
Table 5-15. Differences in USBHS specifications of GD32F4xx series and GD32H7xx series 24
Table 5-16. Differences in FMC specifications of GD32F4xx series and GD32H7xx series 26
Table 5-17. Differences in EXMC specifications of GD32F4xx series and GD32H7xx series 27
Table 5-18. Differences in IPA specifications of GD32F4xx series and GD32H7xx series
Table 6-1. Revision history

1. Foreword

For designers who use GD32 MCU for product development, due to product and function upgradation, they usually need to replace one MCU with another MCU to add new functions while maintaining existing functions. To accelerate the launch of new products, designers often need to port applications to new MCUs.

This application note aims to help you migrate your applications from GD32F4xx MCU to GD32H7xx MCU.

To make better use of this application note, you need to download information of GD32 MCUs such as datasheet, user manual, official example, and development tools from the official website <u>http://www.gd32mcu.com</u>.

Table 1-1. Application series list

GD32F4xx series	GD32H7xx Series
GD32F405xx	GD32H737xx
GD32F407xx	GD32H757xx
GD32F425xx	GD32H759xx
GD32F427xx	
GD32F450xx	
GD32F470xx	

2. System architecture

GD32F4xx and GD32H7xx MCUs have the following differences in system architecture:

- 1. FPU of GD32H7xx MCU is of double-precision, while that of GD32F4xx MCU is of singleprecision.
- 2. GD32H7xx MCU is equipped with I-Cache and D-Cache.
- 3. GD32H7xx MCU is equipped with ITCM and DTCM.
- 4. GD32H7xx MCU has 16 MPU regions, while GD32F4xx MCU has 8 MPU regions.
- 5. GD32H7xx MCU has up to 8 FPBs.
- 6. GD32H7xx MCU allows ETM trace.
- 7. GD32H7xx MCU is equipped with 64-bit AXI host.

3. Pin compatibility

To fulfill clients' demands, both GD32F4xx and GD32H7xx provide multiple packages. BGA100 pins are not compatible with BGA176 pins. LQFP100 pins are compatible with LQFP144 pins in configuration part. Detailed results are listed in the table below:

Package	GD32F4xx					GD32H7xx			
	GD32F4	GD32F4	GD32F4	GD32F4	GD32F4	GD32F4	GD32H7	GD32H7	GD32H7
	05	07	25	27	50	70	37	57	59
LQFP64	\checkmark	\checkmark	\checkmark	\checkmark					
LQFP100	\checkmark								
LQFP144	\checkmark								
LQFP176							\checkmark		
BGA100	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	
BGA176		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		

Table 3-1. Differences in packages of GD32F4xx series and GD32H7xx series

Table3-2. Differences in pin configuration of	f GD32F4xx series and GD32H7xx series
(LQFP144)	

Pin number	Definition of pins of GD32F4xx	Definition of pins of GD32H737/759
	series	series
7	PC13-TAMPER-RTC	PC13
28	PC2	PC2_C
29	PC3	PC3_C
71	NC	VCORE
95	VDD	VDD33USB
103	PA11	USBHS0_DP
104	PA12	USBHS0_DM

Table3-3. Differences in pin configuration of GD32F4xx series and GD32H7xx series (LQFP100)

Pin number Definition of pins of GD32F4xx		Definition of pins of GD32H737/759	
	series	series	
7	PC13-TAMPER-RTC	PC13	
17	PC2	PC2_C	
18	PC3	PC3_C	
19	VDDA	VSSA	
20	VSSA	VREFP	
21	VREFP	VDDA	
22	VDDA	PA0	
24	PA1	PA2	
25	PA2	PA3	
26	PA3	VSS	

Pin number	Definition of pins of GD32F4xx	Definition of pins of GD32H737/759	
	series	series	
27	VSS	VDD	
28	VDD	PA4	
29	PA4	PA5	
30	PA5	PA6	
31	PA6	PA7	
32	PA7	PC4	
33	PC4	PC5	
34	PC5	PB0	
35	PB0	PB1	
36	PB1	PB2	
37	PB2	PE7	
38	PE7	PE8	
39	PE8	PE9	
40	PE9	PE10	
41	PE10	PE11	
42	PE11	PE12	
43	PE12	PE13	
44	PE13	PE14	
45	PE14	PE15	
46	PE15	PB10	
47	PB10	PB11	
48	PB11	VCORE	
49	VCORE	NC	
71	NC	VCORE	
95	VDD	VDD33USB	
70	PA11	USBHS0_DP	
71	PA13	USBHS0_DM	

Note: The information above only shows the differences in pin configuration. Even for same pin configuration, it is necessary to check if pins of datasheets have the same functions when porting.

4. Internal resource compatibility

Table 4-1. Overview of internal resource comparison between GD32F4xx series and GD32H7xx series gives an overview of resource comparison between GD32F4xx and GD32H7xx:

Table 4-1. Overview of internal resource comp	arison between GD32F4xx series and
GD32H7xx series	

On-chip resources	GD32F4xx	GD32H7xx	Compatibility
			description
Main frequency	168/200/240 MHz	600MHz	-
Core	Core M4 core M7 core		-
Flash	512K/1024K/2048K/3072K	1024K/2048K/3840K	-
RAM	192 K/256 K/512 K/768 K	1024K	-
	0	10	Partially
GPTIMER (16 bits)	8	12	compatible
	2	4	Partially
GPTIMER (32 bits)	2	4	compatible
Advanced TIMER (16 bits)	2	2	Partially
Advanced TIMER (TO bits)	2	2	compatible
Basic TIMER (16 bits)	2		Partially
Dasic TIMER (TO Dits)	Z	-	compatible
Basic TIMER (32 bits)		2	Partially
Dasic TIMER (32 Dits)	-	2	compatible
Basic TIMER (64 bits)	-	2	Partially
Dasic TIMER (04 Dits)			compatible
WDG	2	2	Fully compatible
RTC	1	1	Compatible
USART	4	6	Partially
USART	4		compatible
UART	2-4	2	Partially
UART	2-4	۷.	compatible
I2C	3	4	Incompatible
SPI	3-6	5-6	Incompatible
CAN	2	2-3	Incompatible
12S	2	4	Incompatible
USB	FS/HS	HS	Partially
030	го/По 	6	compatible
Ethernet	1	2	Partially
	I	۷	compatible
DCI	1	1	Partially
	1	I	compatible
CTC	1	1	Fully compatible

On-chip resources	GD32F4xx	GD32H7xx	Compatibility
			description
EXMC	1	1	Partially
EXIVIC	I	Ι	compatible
PMU	1	4	Partially
PIVIO	I	1	compatible
EXTI	1	1	Partially
EATI	I	I	compatible
CRC	1	1	Fully compatible
DBG	1	1	Partially
DBG	I	1	compatible
TRNG	1	1	Incompatible
DMA	2	2	Incompatible
ADC	12 bits	14 bits/12 bits	Partially
ADC	12 Dits	14 DIIS/12 DIIS	compatible
DAC	2 1		Partially
DAC	2	I	compatible
RTC	1	1	Fully compatible
TLI	1	1	Fully compatible
SDIO		2	Partially
SDIO	1	2	compatible

Notes: 1. Below are modules exclusively for GD32H7xx series: RAMECCMU, EFUSE, TRIGSEL, MDMA, DMAMUX, OSPIM, OSPI, CAU, HAU, RSPDIF, RTDEC, CMP, VREF, TMU, HPDF, FAC, LPDTS, CPDM, EDOUT, HWSEM, and MDIO.

2. Below is a module exclusively for GD32F4xx series: IREF.

5. Differences of peripheral devices

For peripheral devices where GD32F4xx is not compatible with GD32H7xx, users may port application codes according to the differences of peripheral devices listed below.

5.1. Power management unit (PMU)

Both GD32F4xx and GD32H7xx are equipped with PMUs, which are quite different as listed in the table below:

PMU	GD32F4xx	GD32H7xx	
	Three power domains: back-u	p domain, VDD/VDDA domain, and	
	1.2 V/0.9 V power domain;		
	Three power-saving modes: s	leep mode, deep sleep mode, and	
	standby mode;		
	Built- in low dropout regulator (LDO): LDO outputs voltage for saving		
	consumption.		
	 When VDD power supply is tu 	rned off, VBAT (battery) supplies	
	power to the back-up domain.		
	They are equipped with the log	w voltage detector (LVD) to send	
	interruption or event when the	voltage is lower than the set	
	threshold.		
		VBAT battery charging management,	
	_	working mode management, voltage	
Specifications		output control, low- consumption	
opeomodione		mode management	
	-	USB power regulator	
	LVD monitoring	Power supply monitoring: POR/PDR	
		monitoring, BOR monitoring, LVD	
		monitoring, VDDA voltage detection	
		and monitoring (VAVD), VBAK	
		threshold monitoring, and thermal	
		threshold monitoring	
		Switch mode power supply low	
		dropout regulator (SMPS low dropout	
		regulator)	
	Back-up low dropout (BLDO)		
	regulator of SRAM is exclusively	-	
	used for backing up SRAM.		
Application code	Software is partially compatible.		

For specific functions and register settings, please refer to GD32H7xx User Manual.

5.2. Reset and clock unit (RCU)

The reset control unit (RCTL) is compatible.

The clock control unit (CCTL) is partially compatible, and some differences are shown as below.

The system frequency of GD32F4xx is up to 240 MHz while GD32H7xx is up to 600 MHz.

RCU		GD32F4xx	GD32H7xx
		4 - 32 MHz high speed	4 - 50 MHz high speed crystal
		crystal oscillator (HXTAL)	oscillator (HXTAL)
		Internal 16 MHz RC oscillator	Internal 64 MHz RC oscillator
		(IRC16M)	(IRC64M)
		Internal 48 MHz	z RC oscillator (IRC48M)
		Low speed crystal oscillator (LXTAL)	
		Internal 32K RC oscillator (IRC32K)	
Crestificat			Low power internal 4 MHz RC
Specificat	ions	-	oscillator (LPIRC4M)
		HXTA	L clock monitor
		-	LXTAL clock monitor
			PLL supports integer and fractional
		-	frequency. The fractional frequency
			can be modified when running.
		-	The peripheral clock can be switched
			dynamically.
	TRNG	CK_48M	
	USBFS	CK_48M	-
	USBHS	CK_48M	USBHS 48 M clock source
			USBHS 60 M clock source
		CK_APB1 or CKAPB2	CK_APB1 or CKAPB2
	USART		CK_AHB
	USAN		CK_LXTAL
Peripheral clock			CK_IRC64MDIV
configuration			CK_APB1
comgaration	I2C	CK_APB1	CK_PLL2R
	120		CK_HXTAL
			CK_LPIRC4M
			SPI0 / SPI1 / SPI2:
			CK_PLL0Q
	SPI	CK_APB1 or CKAPB2	CK_PLL1P
			CK_PLL2P
			I2S_CKIN

Table5-2. Differences in RCU specifications of GD32F4xx series and GD32H7xx series

AN112

Migration guide from GD32F4xx Series to GD32H7xx Series

RCU		GD32F4xx	GD32H7xx
			CK_PER
			SPI3 / SPI4:
			CK_APB2
			CK_PLL1Q
			CK_PLL2Q
			CK_IRC64MDIV
			CK_LPIRC4M
			CK_HXTAL
			SPI5:
			CK_APB2
			CK_PLL1Q
			CK_PLL2Q
			CK_IRC64MDIV
			CK_LPIRC4M
			CK_HXTAL
	I2S	PLLI2SR I2S_CKIN	Same as SPI
	OSPI	-	CK_AHB
			CK_APB4
	LPDTS	-	CK_LXTAL
			CK_HXTAL
	CAN		CK_APB2
	CAN	CK_APB1	CK_APB2 / 2
			CK_IRC64MDIV
			CK_PLL0Q
	RSPDIF	-	CK_PLL1R
			CK_PLL2R
			CK_IRC64MDIV
			CK_PLL0Q
			CK_PLL1P
	SAI0/ SAI1	-	CK_PLL2P
			I2S_CKIN
			CK_PER
			CK_PLL0Q
			CK_PLL1P
	SAI2	-	CK_PLL2P
			I2S_CKIN
			CK_PER
			CK_RSPDIF_SYMB
	HPDF	-	Same as SAI0
	EXMC	CK_AHB	CK_AHB
			CK_PLL0Q

RCU		GD32F4xx	GD32H7xx
			CK_PLL1R
			CK_PER
	SDIO	CK_48M	CK_PLL0Q CK_PLL1R
	ENET	The input clock is provided	by external pins (ENET_TX_CLK /
		ENE	T_RX_CLK).
	TLI	2, 4, 8 or 16 division	2, 4, 8 or 16 division frequency of
		frequency of PLLSAIR	PLL2R
	RTC	LXTAL IRC32K 2 - 31 division frequency of HXTAL	LXTAL IRC32K 2 - 63 division frequency of HXTAL
	FWDGT	IRC32K	
Application code		Software is	partially compatible.

5.3. General purpose and alternate function input/ output interface

(GPIO and AFIO)

IO speed options of GPIO module of GD32F4xx include 2M, 25M, 50M, and MAX, while those of GD32H7xx include 12M, 60M, 85M, and 100_220M. When porting codes, make sure to modify parameters. The maximum option of H7xx (100M or 220M) depends on the external capacitor connected to the IO pin.

In addition, GD32H7xx has the function of filtering input signal to make it more stable. GD32F4xx doesn't have the function.

GPIO	GD32F4xx	GD32H7xx	
	1. Input/output direction control;		
	 Schmitt trigger input function enable control; Each pin has weak pull-up/ pull-down function; Output push-pull/ open-drain enable control; Output set/reset control; External interrupt with programmable trigger edge – using EXTI configuration registers; Analog input/ output configuration; Alternate function input/ output configuration; 		
0			
Specifications			
	9. Port configuration lock;		
	10. Single cycle toggle output capability. IO speed can be 2M, 25M, 50M, or MAX. 100_220M. - It has the function of filtering input signal.		

Table5-3. Differences in GPIO specifications of GD32F4xx series and GD32H7xx series

Application code

Software is compatible.

5.4. Direct memory access controller (DMA)

Table 5-4. Differences in DMA specifications of GD32F4xx series and GD32H7xx series

DMA	GD32F4xx	GD32H7xx	
	1. Two AHB master interfaces for tr	ansferring data, and one AHB	
	slave interface for programming DMA.		
	2. Support independent single, 4, 8	, 16-beat incrementing burst	
	memory and peripheral transfer.		
	3. Support switch-buffer transmission	on between peripheral and	
	memory.		
	4. Software DMA channel priority (le	ow, medium, high, ultra high) and	
	hardware DMA channel priority.		
	5. Support independent 8, 16, 32-b	it memory and peripheral transfer.	
	6. Support independent fixed and ir	creasing address generation	
	algorithm of memory and periphera	I.	
	7. Support circular transfer mode.		
	8. Support single-data and multi-da	ta modes, with the maximum FIFO	
	depth of 32-bit.		
Specifications	Multi-data mode: Pack/Unpack data when memory transfer width is		
	different from peripheral transfer width.		
	Single-data mode: Read data from source when FIFO is empty and		
	write data to destination when one data has been pushed into FIFO.		
	9. One separate interrupt per chanr	nel with five types of event flags.	
	16 channels (each DMA has 8	16 channels (8 channels of DMA0	
	channels), up to 8 peripherals per	and 8 channels of DMA1). Each	
	channel with fixed hardware	channel is configurable.	
	peripheral requests.		
	Support three transfer modes:	Support three transfer modes:	
	read from memory and write to	read from memory and write to	
	peripheral, read from peripheral	peripheral, read from peripheral	
	and write to memory, read from	and write to memory, read from	
	memory and write to memory (only	memory and write to memory.	
	for DMA1).		
	It is unnecessary to use with	It is necessary to use with	
	DMAMUX.	DMAMUX.	
Application code	Software is incompatible.		

For specific functions and register configurations, please refer to GD32H7xx User Manual.

5.5. Debug (DBG)

GD32H7xx has a new function of JTAG security debug, which can be enabled only if the JTAG debug interface locked by keys is unlocked according to the processes. SWD debug is identical between GD32H7xx and GD32F4xx, but for GD32H7xx, to switch to JTAG debug, it is required to write EFUSE register and it is not allowed to switch from JTAG debug to SWD debug.

5.6. Analog-to-digital converter (ADC)

Both GD32F4xx and GD32H7xx are equipped with ADC modules, which are slightly different as listed in the table below:

ADC	GD32F4xx	GD32H7xx
	Not support differential sampling	Support differential sampling.
	Not support HPDF to manage	Support HPDF to manage
	sampling result	sampling result.
	Support internal trigger and	Support TRIGSEL and software
	software trigger.	trigger.
	Not support asynchronous	It is of dual-clock domain
	Not support asynchronous sampling	architecture where AHB clock and
Specifications		asynchronous clock are allowed.
Specifications	Sampling time is fixed to several values.	Sampling time can be configured
		flexibly with a maximum value of
		642.5 cycles.
	The maximum resolution is 12-bit	The maximum resolution is 14-bit
	resolution.	resolution.
	The maximum clock frequency is	The maximum clock frequency is
	The maximum clock frequency is 40 Mhz.	80 Mhz for ADC2 and 72 Mhz for
		ADC0 and ADC1.
Application code	Partially compatible	

Table5-5, Differences in ADC	specifications of GD32F4xx	series and GD32H7xx series
Tubles-0. Differences in ADO	specifications of Obozi 4XX	Series and ODSETTAX Series

For specific functions and register settings, please refer to GD32H7xx User Manual.

5.7. Digital-to-analog converter (DAC)

On the basis of GD32F4xx, DAC of GD32H7xx has new sample and keep mode, output buffer calibration function, and low-power mode, so it is equipped with new calibration register (DAC_CALR), mode control register (DAC_MDCR), sample and keep sample time register 0 (DAC_SKSTR0), sample and keep sample time register 1 (DAC_SKSTR1), sample and keep keep time register (DAC_SKKTR), and sample and keep refresh time register (DAC_SKRTR).

For detailed functions and register configuration, please refer to GD32H7xx User Manual.

5.8. Real-time clock (RTC)

Both GD32F4xx and GD32H7xx are equipped with RTC modules, which are slightly different as listed in the table below:

Table 5-6. Differences in RTC specifications of GD32F4xx series and GD32H7xx series

RTC	GD32F4xx	GD32H7xx
	Twenty 32-bit (80 bytes in total)	Thirty two 32-bit (128 bytes in
Specifications	general-purpose and back-up	total) general-purpose and back-
	registers	up registers
Application code	Software is compatible.	

For specific functions and register settings, please refer to GD32H7xx User Manual.

5.9. Timer (TIMER)

Table5-7. Differences in TIMER specifications of GD32F4xx series and GD32H7xx series

TIMER	GD32F4xx	GD32H7xx	
	(List advanced TIMER functions	, based on which general TIMER	
	functions are reduced.)		
	Selectable clock source: interest	ernal clock, internal trigger, external	
	input, and external trigger.		
	 Multiple counting modes: up 	counting, down counting and center-	
	aligned counting.		
	Quadrature decoder: used for	or motion tracking and determination	
	of both rotation direction and	position.	
	 Hall sensor function: used for 	3-phase motor control.	
	Programmable prescaler: The 16-bit prescaler can be change		
Specifications	when running.		
	 Programmable dead time insertion; 		
	 Auto reload function; 		
	Programmable counter repe	etition function;	
	 Single pulse output function; 		
	Break input.		
	Interrupt output and DMA red	quests: update event, trigger event,	
	compare/capture event, and	•	
		dule allows a single timer to start	
	multiple timers.		
	-	vs the selected timers to start	
	counting on the same clock c	ycle.	

TIMER	GD32F4xx	GD32H7xx
	Timer master-slave manager	nent
		Supported 16-bit TIMER: TIMER0/7,
	Supported 16-bit TIMER:	TIMER2/3/30/31,
	TIMER0/7, TIMER2/3, TIMER8/9,	TIMER14/40/41/42/43/44 and
	TIMER9/10/12/13, and TIMER5/	TIMER15/16.
	6.	Supported 32-bit TIMER:
	Supported 32-bit TIMER:	TIMER1/4/22/23 and TIMER5/ 6.
	TIMER1/4.	Supported 64-bit TIMER:
		TIMER50/51.
		Multi mode channel: MCHx (x=0-3),
		where independent mode
		(independent input capture and
	Complementary channel: CHxN	independent output comparison)
	(x=0-3), where complementary	and complementary mode (only for
	mode (for complementary output	complementary output with CHx)
	with CHx) is only supported.	are supported.
	The advanced TIMER	The advanced TIMER (TIMER0/7),
	(TIMER0/7) supports the function.	L3 TIMER
		(TIMER14/40/41/42/43/44), and L4
		TIMER (TIMER14/40/41/42/43/44)
		support this function.
	Internal connection of timers can	Internal connection of timers can be
	only be achieved with fixed	achieved with fixed configuration
	configuration.	and by selecting signal from
		TRIGSEL with ITI14.
		Support two repetition registers
		TIMERx_CREP0/1. CREP0[7:0] bit-
		field of the TIMERx_CREP0 register
	Only support one repetition	is 8-bit, while CREP1[31:0] bit-field
	register TIMERx_CREP whose	of the TIMERx_CREP1 register is
	CREP[7:0] bit-field is 8-bit.	32-bit: advanced TIMER
		(TIMER0/7), L3 TIMER
		(TIMER14/40/41/42/43/44), and L4
		TIMER (TIMER15/16).
	Input break function: BREAK	Input break function: BREAK0 and
		BREAK1
	-	Locked break function
		Separate dead time insertion and
	-	break function: CHx_O and
		MCHx_O (x=0-3)

TIMER	GD32F4xx	GD32H7xx
		Composite PWM function:
		advanced TIMER (TIMER0/7), L0
	-	TIMER (TIMER1/2/3/4/22/23/30/31),
		and L3 TIMER
		(TIMER14/40/41/42/43/44)
		Output match pulse select function:
		advanced TIMER (TIMER0/7), L0
	-	TIMER (TIMER1/2/3/4/22/23/30/31),
		and L3 TIMER
		(TIMER14/40/41/42/43/44)
		Delayable single pulse mode:
		advanced TIMER (TIMER0/7), L0
	-	TIMER (TIMER1/2/3/4/22/23/30/31),
		and L3 TIMER
		(TIMER14/40/41/42/43/44)
		Non-quadrature decoder: advanced
	-	TIMER (TIMER0/7) and L0 TIMER
		(TIMER1/2/3/4/22/23/30/31)
		Quadrature decoder signal
	-	detection: signal jump detection
		and disconnection detection
	-	UPIF bit backup function
	-	Restart + event mode
Application code	Software is	incompatible.

For specific functions and register settings, please refer to GD32H7xx User Manual.

5.10. Universal synchronous/asynchronous receiver/transmitter (USART)

Table 5-8. Differences in USART specifications of GD32F4xx series and GD32H7xx series

USART	GD32F4xx	GD32H7xx
USART/ UART	USART0 / 1 / 2 / 5	
USARI/ UARI	UART3 / 4 / 6 / 7	
Clock	Single clock domain	Dual clock domain
Baud rate	Up to 15 MBits/s	Up to 37.5 MBits/s;
Programmable data	8/9 bits	7 / 8 / 9 / 10 bits
width	0/9 DIIS	778797100118

USART	GD32F4xx	GD32H7xx	
NRZ standard format			
	Full-duplex asynchronous communication		
	 Half-duplex single wire of 	Half-duplex single wire communication	
Programmable baud-rate generator		e generator	
	 Fully programmable ser 	ial port feature	
	 Separate enable bits for 	Separate enable bits for transmitter and receiver	
	 Hardware modem operation 	Hardware modem operations (CTS / RTS)	
	 LIN break generation ar 	LIN break generation and detection	
	 IrDA supported 	IrDA supported Synchronous mode and transmitter clock output for synchronous transmission ISO 7816-3 compliant smartcard interface	
	 Synchronous mode and 		
Specifications	transmission		
	ISO 7816-3 compliant si		
	 Multiprocessor commun 	ication	
	 Support DMA mode 		
		Swappable Tx / Rx pin	
		Support enabling RS485 driver.	
		Support ModBus communication	
	-	Support receive/transmit FIFO	
	functions.		
		USART can be waked from the	
	deep sleep mode.		
Application code	Software is incompatible.		

For specific functions and register settings, please refer to GD32H7xx User Manual.

5.11. Inter-integrated circuit (I2C) bus interface

Both GD32F4xx and GD32H7xx are equipped with I2C interfaces for communication between MCU and external device, which are quite different as listed in the table below:

I2C	GD32F4xx	GD32H7xx	
	Addressing mode: 7-bit and 10-bit addressing and general call		
	addressing;		
	Support DMA mode;		
	Optional PEC generation and check;		
On a sifi sati sas	Standard mode (up to 100 kHz) and fast mode (up to 400 kHz);		
Specifications	Multi-master mode capability.		
	Configurable SCL stretchin	g in slave mode.	
	-	Fast mode plus (1 MHz)	
		Programmable setup and hold	
	-	time	

Table 5-9. Differences in I2C specifications of GD32F4xx series and GD32H7xx series

I2C	GD32F4xx	GD32H7xx
	Compatible with SMBus2.0 and	Compatible with SMBus3.0and
	PMBus	PMBus1.3
	SAM_V mode	-
	Support digital and analog noise	Support programmable digital and
	filters.	analog noise filters.
		Wakeup from sleep mode and
	-	Deep-sleep mode on I2C
		address match.
Application code	Software is incompatible.	

For specific functions and register settings, please refer to GD32H7xx User Manual.

5.12. Serial peripheral interface/inter-IC sound interface (SPI/I2S)

Both GD32F4xx and GD32H7xx are equipped with SPI/I2S interfaces for communication between MCU and external device, which are quite different as listed in the table below:

SPI	GD32F4xx	GD32H7xx	
	Master-slave operation in full	Ill duplex and simplex modes;	
	 Hardware CRC calculation, transmission, and verification; 		
	Transmission and receiving	Transmission and receiving can be achieved in the DMA mode.	
	Support SPI TI mode.		
	Quad-SPI configuration available	ailable in master mode.	
	Software and hardware NS	S management;	
	 Bit order can be LSB first o 	r MSB first.	
	16-bit-wide separate transmit ar	ad 32-bit-wide separate transmit and	
	receive buffers	receive buffers	
	8-bit or 16-bit data frame size	4-bit to 32-bit data frame size	
Specifications	_	MOSI and MISO pin switch	
	-	alternate function	
	-	Protect configurations and settings	
	-	Multi-master and multi-slave mode	
		Both the minimum delay between	
	_	data frames and the minimum	
	-	delay between NSS and data	
		stream are adjustable	
	-	Configurable FIFO thresholds	
	_	The underrun condition is	
	-	configurable in the slave mode	
Application code	Software is incompatible.		

Table 5-10. Differences in SPI specifications of GD32F4xx series and GD32H7xx series

For specific functions and register settings, please refer to GD32H7xx User Manual.

Table5-11. Differences in I2S specifications of GD32F4xx series and GD32H7xx series

128	GD32F4xx	GD32H7xx	
	 Master or slave operation for transmission/reception; 		
	 Four I2S standards supported: Phillips, MSB justified, LSB 		
	justified and PCM standard.		
	Data length can be 16 bits, 24 bits, or 32 bits.		
	Channel length can be 16 bits	or 32 bits.	
	Audio sample frequency can be	be 8 kHz to 192 kHz using I2S	
	clock divider.		
	 Programmable idle state clock polarity; The master clock (MCK) can be output. Transmission and reception can be achieved with DMA function. Bit order can be LSB first or MSB first. 16-bit-wide separate transmit and receive buffers 32-bit-wide separate transmit and receive buffers 		
Specifications			
		Separate transmit and receive 32-	
	bit FIFO Support full duplex mode		
		Error signal to improve reliability:	
		underrun, overrun, and frame	
		format errors	
Application code	Software is incompatible.		

For specific functions and register settings, please refer to GD32H7xx User Manual.

5.13. Digital camera interface (DCI)

DCIs of GD32H7xx and GD32F4xx series are slightly different as shown in the table below:

DCI	GD32F4xx	GD32H7xx	
	Capture of digital videos and in	Capture of digital videos and images;	
 Support 8-bit, 10-bit, 12-bit, or 14-bit parallel int 		14-bit parallel interface.	
	 High-efficiency transmission with DMA; 		
	 Support video and image clipp 	bing.	
	 Support different pixel digital encoding formats like 		
	YCbCr422/RGB565/YUV420/and Bayer.		
Specifications	 Support JPEG compression format. Support embedded code synchronization and hardware synchronization. 		
	Digital sensor interface	CCIR656 video interface and	
		digital sensor interface	
	- Interlaced scanning mo		
	- Progressive scanning mode		

DCI	GD32F4xx	GD32H7xx
	-	CCIR656 code error correction
Application code	Software is partially compatible.	

For specific functions and register settings, please refer to GD32H7xx User Manual.

5.14. SDIO interface (SDIO)

SDIOs of GD32H7xx series and GD32F4xx series are quite different. SDIO of GD32H7xx is of brand-new design, particularly with updates in support card protocols which dramatically improve reading and writing speed of control cards. Detailed comparative differences are listed in the table below.

Table 5-13. Differences in SDIO specifications of GD32F4xx series and GD32H7xx series

SDIO	GD32F4xx	GD32H7xx	
	■ Full support for Multimedia Card System Specification Version		
	4.2 (and previous versions) Card;		
	■ Full support for SD Memory Card Specifications Version 2.0;		
	■ Full support for SD I/O Card Specification Version 2.0 card and		
	two different data bus modes:	1-bit (default) and 4-bit;	
	 Support interrupt and DMA requests. 		
	Maximum 8-bit data transfer n	laximum 8-bit data transfer mode.	
		There are two SDIOs (SDIO0 and	
	There is only one SDIO.	SDIO1). SDIO0 can work in UHS-I	
		but SDIO1 can not work in UHS-I.	
		Support eMMC protocol 4.51 in	
		five data bus modes: 1-bit	
	-	(default), 4-bit (including SDR and	
Specifications		DDR), and 8-bit (including SDR	
		and DDR).	
	_	Full support for SD Memory Card	
		Specifications Version 3.0.	
		Full support for SD I/O Card	
	_	Specification Version 3.0 and	
		three different data bus modes: 1-	
		bit (default) and 4-bit (SDR/DDR).	
	Maximum 48 Mhz data transfer	Maximum 104 Mhz data transfer	
	frequency	frequency	
	-	Data transfer can be achieved with	
		DDR.	
	Full support for CE-ATA digital	_	
	protocol Version 1.1.		

SDIO	GD32F4xx	GD32H7xx
		Three internal clocks can be
		selected as the receive clock.
		There are directional signal lines
	-	for commands and data. CPDM
		module can be used for tuning of
		data sampling points. 1.8 V
		voltage can be switched.
		Three internal trigger lines are
		supported. Requests can be sent
		directly to MDMA to achieve
	-	continuous transmission operation
		without CPU intervention
		operation.
		There is internal DMA (IDMA)
		which can be in 8-beat burst
	-	transfer mode and provides two
		optional configurations of buffer
		channel.
Application code	Software is part	ially compatible.

5.15. Controller area network (CAN)

The CANs of GD32H7xxseries and GD32F4xx series are quite different. CAN is a brand new design for the GD32H7xx series with flexible mailbox configuration system so that it can support filtering more identifiers. Detailed comparative differences are listed in the table below.

CAN	GD32F4xx	GD32H7xx	
	 Support CAN bus protocol 2.0A/B. 		
	 Support CAN regular frame with a maximum of 8-byte data and 		
	the maximum communication baud rate of 1 Mbit/s.		
	 Support transmit and receive t 	timestamps.	
	Not support CAN-FD frame;	Support ISO11898-1:2015 and	
		BOSCH CAN-FD specifications.	
Specifications		Maximum communication baud	
		rate of CAN-FD frame is 8 Mbit/s.	
	3 transmit mailboxes	When each mailbox is configured	
		as 8-byte data, a maximum of 32	
		mailboxes can be flexibly	
		configured as transmit or receive	
		mailboxes.	

CAN	GD32F4xx	GD32H7xx
	Two receiving FIFOs with a capacity of 3 frames Support four communication modes: normal mode, loopback mode, silent loopback mode, and silent mode.	Rx FIFO up to 6 frames capacity, with DMA supported Support four communication modes: normal mode, stop mode, silent loopback mode, and monitoring mode.
	Support one power-saving mode: sleep working mode.	Support two power-saving modes: CAN_Disable mode and virtual networking mode.
	Not support wake-up function.	Support two ways to awake MCU from pretended networking mode: matching awakening and overdue awakening.
	CAN0 and CAN1 share 28 filters.	Each CAN has following filters: One public filter register for receive mailboxes; One public filter register for receive FIFOs, 32 private filter registers for receive mailboxes or receive FIFO;
	Filtering function: Maximumly support 56 extended identifiers in 32-bit list mode. Maximumly support 112 extended identifiers in 16-bit list mode.	Filtering function: (receive FIFO) With the identifier filtering function, the receive FIFO can maximumly filter104 extended identifiers, 208 standard identifiers, or 8 bits of 416 identifiers.
Application code	Software is incompatible.	

For specific functions and register settings, please refer to GD32H7xx User Manual.

5.16. Universal serial bus high-speed interface (USBHS)

USBHSs of GD32H7xx series and GD32F4xx series are slightly different. For detailed contrast differences, please refer to the table below.

Table5-15. Differences in USBHS specifications of GD32F4xx series and GD32H7xx series

USBHS	GD32F4xx	GD32H7xx
Specifications	Support USB2.0 high-speed (speed (1.5 Mb/s) host mode.	480 Mb/s)/full-speed (12Mb/s)/low-

USBHS	GD32F4xx	GD32H7xx	
	Support USB2.0 high-speed (480Mb/s)/full-speed (12Mb/s)	
	device mode.		
	 Support OTG protocol that follows HNP (host negotiation 		
	protocol) and SRP (session request protocol).		
	 Support all four transfer method 	ods: control transfer, bulk transfer,	
	interrupt transfer, and synchro	onous transfer.	
	 Support high-bandwidth interr 	upt transfer and synchronous	
	transfer.		
	In the host mode, the USB tra	nsaction scheduler is included to	
	effectively handle the USB tra	nsaction request.	
	Include one 4 KB FIFO RAM.		
	In the host mode, two transmi	t FIFOs (cyclic transmit FIFO and	
	non-cyclic transmit FIFO) and	one receive FIFO (shared by all	
	channels) are included.		
	In the host mode, if operating	in the high speed mode, PING	
	protocol is supported.		
	In the device mode, remote wake-up function is supported.		
	 One USB PHY that follows USB OTG protocol is included. 		
	 One built-in DMA scheduler and engine are included. Data 		
	copying can be executed for each application request between		
	USBHS and the system.		
	In the host mode, the time interval of SOF can be adjusted		
	dynamically.		
	 SOF pulse can be output to PAD. 		
	The ID pin level and VBUS vo	Itage can be detected.	
	In the host mode or OTG A device mode, external parts are		
	required to supply power to co		
	There is only one USBHS.	There are two USBHSs.	
	In the host mode, 12 channels are	In the host mode, 16 channels are	
	supported.	supported.	
	In the device mode, 6 OUT	In the device mode, 8 OUT	
	endpoints and 6 IN endpoints are	endpoints and 8 IN endpoints are	
	supported.	supported.	
	In the device mode, 6 transmit	In the device mode, 8 transmit	
	FIFOs (there is one transmit FIFO	FIFOs (there is one transmit FIFO	
	at each IN endpoint) and one	at each IN endpoint) and one	
	receive FIFO (shared by all OUT	receive FIFO (shared by all OUT	
	endpoints) are included.	endpoints) are included.	
	External high-speed PHY is only	Built-in high-speed PHY and	
	supported.	external high-speed PHY are	
	••	supported.	

USBHS	GD32F4xx	GD32H7xx
		Battery changing detection (BCD)
	-	specified in the battery charging
		specification 1.2 is supported.
		Additional detection protocol
		(ADP) specified in USB OTG
	-	supplementary protocol 2.0 is
		supported.
		Link power management (LPM)
		specified in the USB2.0 link layer
	-	power management appendix and
		USB2.0 engineering modification
		notice errata is supported.
Application code	Software is part	ially compatible.

For specific functions and register settings, please refer to GD32H7xx User Manual.

5.17. Flash memory controller (FMC)

Table 5-16. Differences in FMC specifications of GD32F4xx series and GD32H7xx series

FMC	GD32F4xx	GD32H7xx
	 Option bytes are uploaded to every system reset. 	the option byte control registers on
	Erase/program protection to p	
	Flash security protection to prevent illegal code/data access.	
	Up to 3072KB of on-chip flash	Up to 3840KB of on-chip flash
	memory.	memory.
Specifications	The region of the MCU executing instructions without waiting time is up to 1024K bytes (in case that flash size is equal to 256K or 512K, all memory has no waiting time). There is long delay when	All memories need waiting time. There is a short delay when CPU fetches the instructions.
	CPU fetches the instructions out of the range.	
	Word/half-word/byte reading	Double-word/word/half-word/byte
	operation.	reading operation.
	Word/half-word/byte programming,	Double-word/word programming,
	4KB page erase, sector erase and	4KB sector erase and mass erase
	mass erase operation.	operation.
	2 banks are adopted. Bank0 is	
	used for the first 1024KB and	-
	bank1 is for the rest capacity.	

FMC	GD32F4xx	GD32H7xx
	512B OTP (One-time program)	
	block and 16B OTP lock block	-
	used for user data storage.	
	30K bytes information block for	64K bytes information block for
	boot loader.	boot loader.
		Provides one execute-only
	-	dedicated code read protection
		(DCRP) area.
		Provide one secure-access area
	-	which is accessible only in secure
		access mode (SCR mode).
Application code	Software is incompatible.	

For specific functions and register settings, please refer to GD32H7xx User Manual.

External memory controller (EXMC) 5.18.

EXMC	GD32F4xx	GD32H7xx
	SRAM	
	■ PSRAM	
	■ ROM	
	NOR Flash	
	8-bit or 16-bit NAND Flash	
	■ SDRAM	
	16-bit PC card	-
Cracifications	Support two NAND Banks	Support one NAND Bank
Specifications	Switch between AMBA protocol	Switch between AXI protocol and
	and off-chip memory protocols	off-chip memory protocols
		Support Bank re-mapping function
		to achieve switch between
	-	NOR/PSRAM bank and SDRAM
		device0.
	EXMC supports 8-bit and 16-bit	EXMC only supports 16-bit SRAM.
	SRAM.	
Application code	Software is partially compatible.	

4 CD22E4-- ----17xx

For specific functions and register settings, please refer to GD32H7xx User Manual.

5.19. Image processing accelerator (IPA)

Table 5-18. Differences in IPA specifications of GD32F4xx series and GD32H7xx series

IPA	GD32F4xx	GD32H7xx
	 Copy one source image to the destination image. 	
	 Copy one source image to the 	destination image with specific
	pixel format.	
	Convert and blend two source images to the destination image	
	with specific pixel format.	
	■ Fill the target image area with specific color.	
	The foreground layer image can	The foreground layer image can
Specifications	be in 11 pixel formats.	be in 16 pixel formats.
	Three 4-word 32-bit FIFOs	Three 4-double-word 64-bit FIFOs
		Support decimal scaling and
	-	bilinear scaling.
		Support image rotation (by 0°, 90°,
_	-	180°, and 270°)
		The foreground layer image can
	-	be of interlaced input.
Application code	Software is partially compatible.	

For specific functions and register settings, please refer to GD32H7xx User Manual.

6. Revision history

Table 6-1. Revision history

Revision No.	Description	Date
1.0	Initial release	April 15, 2023

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which have been expressly identified in the applicable agreement, the Products are designed, developed, and / or manufactured for ordinary business, industrial, personal, and / or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as its suppliers and / or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as its suppliers and / or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2023 GigaDevice – All rights reserved