GigaDevice Semiconductor Inc.

GD32VW553AT 指令用户指南

应用笔记 AN151

1.3版本

(2025年3月)

t	⊐.
	ऋ
	111

E	录	
表	衰了.	
1	. A	Т 指令格式7
	1.1.	指令类型7
	1.2.	指令格式7
	1.3.	响应格式7
2	. A	T 指令一览表
3	. A	Т 基础指令集10
	3.1.	AT10
	3.2.	ATQ10
	3.3.	AT+HELP
	3.4.	AT+RST 11
	3.5.	AT+GMR
	3.6.	AT+TASK
	3.7.	AT+HEAP12
	3.8.	AT+SYSRAM12
	3.9.	AT+UART12
	3.10.	AT+TRANSINTVL13
4	. A	T WIFI 指令集14
	4.1.	AT+CWMODE_CUR14
	4.2.	AT+CWJAP_CUR14
	4.3.	AT+CWLAP15
	4.4.	AT+CWSTATUS15
	4.5.	AT+CWQAP
	4.6.	AT+CWSAP_CUR16
	4.7.	AT+CWLIF
	4.8.	AT+CWAUTOCONN17
5	. A	T TCPIP 指令集18
	5.1.	AT+PING

5.2.	AT+CIPSTA
5.3.	AT+CIPSTART
5.4.	AT+CIPSEND
5.5.	AT+CIPSERVER
5.6.	AT+CIPCLOSE
5.7.	AT+CIPSTATUS22
5.8.	AT+CIFSR
5.9.	AT+CIPMODE
6. A	T BLE 指令集24
6.1.	AT+BLEENABLE
6.2.	AT+BLEDISABLE
6.3.	AT+BLENAME24
6.4.	AT+BLEADVSTART25
6.5.	AT+BLEADVSTOP25
6.6.	AT+BLEADVDATA26
6.7.	AT+BLEADVDATAEX
6.8.	AT+BLESCANRSPDATA
6.9.	AT+BLEPASSTH
6.10.	AT+BLEPASSTHAUTO27
6.11.	AT+BLEPASSTHCLI
6.12.	AT+BLESCANPARAM
6.13.	AT+BLESCAN
6.14.	AT+BLESYNC29
6.15.	AT+BLESYNCSTOP
6.16.	AT+BLECONN
6.17.	AT+BLESCONNPARAM
6.18.	AT+BLEDISCONN
6.19.	AT+BLEMTU
6.20.	AT+BLEPHY
6.21.	AT+BLEDATALEN
6.22.	AT+BLEADDR

6.23.	AT+BLESETAUTH
6.24.	AT+BLEPAIR
6.25.	AT+BLEENCRYPT
6.26.	AT+BLEPASSKEY
6.27.	AT+BLECOMPARE
6.28.	AT+BLELISTENCDEV
6.29.	AT+BLECLEARENCDEV
6.30.	AT+BLEGATTSSVC
6.31.	AT+BLEGATTSCHAR
6.32.	AT+BLEGATTSDESC
6.33.	AT+BLEGATTSLISTALL
6.34.	AT+BLEGATTSNTF40
6.35.	AT+BLEGATTSIND41
6.36.	AT+BLEGATTSSETATTRVAL41
6.37.	AT+BLEGATTCDISCSVC
6.38.	AT+BLEGATTCDISCCHAR
6.39.	AT+BLEGATTCDISCDESC43
6.40.	AT+BLEGATTCRD
6.41.	AT+BLEGATTCWR44
7. 版	本历史

表索引

表 1-1	. 指令类型	7
表 1-2	2 指令格式	7
表 1-3	,响应格式	7
表 2-1	. AT 指令	8
表 3-1	. 进入 AT 指令模式1	0
表 3-2	2. 离开 AT 指令模式1	0
表 3-3	. 查询所有 AT 指令1	0
表 3-4	L 模块复位指令1	1
表 3-5	. 查询版本信息	1
表 3-6	· 查询当前操作系统所有任务 1	1
表 3-7	'. 查询当前操作系统空余 HEAP1	2
表 3-8	. 查询当前空余 SRAM 空间	2
表 3-9). 査询或设置串口参数1	2
表 3-1	0. 设置或查询透传模式下的数据发送间隔1	3
表 4-1	. 查询或设置 WiFi 当前工作模式1	4
表 4-2	2. 查询已连接 AP 信息或连接 AP1	4
表 4-3	. 扫描并列出周围 AP 的信息1	5
表 4-4	. 査询 WiFi 状态,STA 或者 SoftAP 或者 MONITOR1	5
表 4-5	。断开 AP1	6
表 4-6	. 启动 SoftAP1	6
表 4-7	'. 查看连接上 SoftAP 的客户端1	7
表 4-8	. 设置开机是否自动连接 AP1	7
表 5-1	. Ping 功能1	8
表 5-2	2. 查询或设置本地 STA 的 IP 地址1	8
表 5-3	. 建立 TCP 连接或 UDP 传输	9
表 5-4	L 发送数据	20
表 5-5	. 启动 TCP 服务器	21
表 5-6	. 关闭 TCP 连接或 UDP 传输	22
表 5-7	. 查询网络连接信息	2
表 5-8	. 査询本地 IP 地址信息	22
表 5-9). 设置或查询传输模式	23
表 6-1	.使能 ble 模块	24
表 6-2	2. 失能 ble 模块	24
表 6-3	2. 设置名称	24
表 6-4	L 开启蓝牙广播	25
表 6-5	5. 停止蓝牙广播	25
表 6-6	5. 设置广播内容	26
表 6-7	1. 设置广播内容	26
表 6-8	2. 设置扫描回复内容	27
表 6-9	9. 开启透传模式	27

6-10.	目切廾后透传模式	.27
6-11.	设置扫描参数	.28
6-12.	开启扫描	.29
6-13.	BLE开始/取消同步	.29
6-14.	BLE停止同步	.30
6-15.	BLE建立连接	.30
6-16.	设置/查询连接参数	.31
6-17.	BLE 断开连接	.31
6-18.	更新/查询 mtu	.32
6-19.	更新/查询 phy	.32
6-20.	Data length extension	.33
6-21.	查询/设置 ble bd address	.34
6-22.	配置 AUTHENTICATION	.34
6-23.	发起配对	.35
6-24.	启动加密	.36
6-25.	输入 passkey	.36
6-26.	输入 compare 结果	.37
6-27.	列出 bond device 列表	.37
6-28.	移除 bond 设备	.38
6-29.	列出本地注册的 service	.38
6-30.	列出对应 service 的 characteristic	.39
6-31.	列出对应 characteristic 的 descriptor	.39
6-32.	列出本地所有 service 中信息	.40
6-33.	发送 notification	.40
6-34.	发送 indication	.41
6-35.	设置 characteristic 的值	.41
6-36.	发现 service	.42
6-37.	发现 characteristic	.43
6-38.	发现 descriptor	.43
6-39.	Read attribute value	.44
6-40.	Write attribute value	.44
7-1.)	版本历史	.46
	6-10. 6-11. 6-12. 6-13. 6-14. 6-14. 6-15. 6-16. 6-16. 6-17. 6-20. 6-21. 6-22. 6-24. 6-22. 6-24. 6-24. 6-25. 6-26. 6-26. 6-26. 6-26. 6-27. 6-28. 6-26. 6-30. 6-30. 6-31. 6-32. 6-31. 6-32. 6-34. 6-35. 6-35. 6-36. 6-37. 6-38. 6-37. 6-38. 6-37. 6-38. 6-37. 6-38. 6-37. 6-38. 6-37. 6-38. 6-37. 6-38. 6-37.	6-11. 设置扫描参数. 6-12. 开启扫描。 6-13. BLE开始/取消同步. 6-14. BLE停止同步. 6-15. BLE建立连接. 6-16. 设置/查询连接参数. 6-17. BLE断开连接. 6-18. 更新/查询 mtu. 6-19. 更新/查询 mtu. 6-19. 更新/查询 pty 6-20. Data length extension 6-21. 查询/设置 ble bd address 6-22. 配置 AUTHENTICATION. 6-23. 发起配对. 6-24. 启动加密. 6-25. 输入 passkey. 6-26. 输入 compare 结果. 6-27. 列出 bond device 列表. 6-28. 移除 bond 设备. 6-29. 列出本地注册的 service. 6-30. 列出本地注册的 service bd characteristic 6-31. 列出对应 characteristic bd descriptor. 6-33. 发送 notification. 6-34. 发送 indication. 6-35. 设置 characteristic bd descriptor. 6-36. 发现 characteristic bd descriptor. 6-37. 发现 characteristic bd descriptor. 6-38. 发现 characteristic bd descriptor. 6-37. 发现 characteristic bd descriptor. 6-38. 发现 characteristic bd descriptor. 6-39. Read attribute value 6-30. Read attribute value 6-31. 为出 本地所有 service 6-33. 发现 characteristic bd 6-34. 发现 characteristic

1. AT 指令格式

1.1. 指令类型

表 1-1. 指令类型

类型	格式	描述
帮助指令	AT+ <x>=? 查看指令参数及取值范围</x>	
查询指令	AT+ <x>?</x>	查询指定目标的当前参数值
执行指令	AT+ <x> 或</x>	运行命令
	AT+ <x>=<></x>	设置指定目标参数值

1.2. 指令格式

表 1-2. 指令格式

字段	说明		
AT	指令前缀		
<cmd></cmd>	指令字符串		
[]	可选部分		
\diamond	强制部分,针对特定命令,有些参数是强制要输入的		
[p1],[p2],[p3],	参数,参数支持字符串和数字两种, IP 地址采用字符串"x.x.x.x"格式输入		
	字符串: 必须用双引号括起来		
	数字: 支持十进制和十六进制		

Note: AT [+<CMD>] [=] [p1],[p2],[p3],...

1.3. 响应格式

表 1-3. 响应格式

输出类型	说明		
[+ <cmd>:<msg>]</msg></cmd>	输出结果或错误提示		
<rsp></rsp>	OK: 代表成功		
	ERROR: 代表失败		

注意:响应格式里面的汉字仅仅是对命令响应的解释,实际上不会显示。

2. AT 指令一览表

表 2-1. AT 指令

指令	描述	
AT	进入 AT 指令模式	
ATQ	离开 AT 指令模式	
AT+HELP	查询所有 AT 指令	
AT+RST	模块复位	
AT+GMR	查询版本信息	
AT+TASK	查询当前操作系统所有任务	
AT+HEAP	查询当前操作系统空余 HEA P	
AT+SYSRAM	查询当前空余 SRAM 空间	
AT+UART	设置 LOG UART 参数或读取当前参数	
AT+TRANSINTVL	查询或设置透传模式下的数据发送间隔	
AT+CWMODE_CUR	查询或设置 WiFi 当前工作模式: SoftAP 或 STA	
AT+CWJAP_CUR	连接 AP	
AT+CWLAP	扫描并显示 AP 列表	
AT+CWSTATUS	查询 WiFi 当前工作模式和状态	
AT+CWQAP	断开与 AP 的连接	
AT+CWSAP_CUR	启动 SoftAP 模式	
AT+CWLIF	查询所有连接到 SoftAP 的 STA 信息	
AT+CWAUTOCONN	设置上电时是否自动连接 AP	
AT+PING	Ping 功能	
AT+CIPSTA	查询或设置本地 STA 的 IP 地址	
AT+CIPSTART	建立 TCP 连接或 UDP 传输	
AT+CIPSEND	发送数据	
AT+CIPSERVER	启动 TCP 服务器	
AT+CIPCLOSE	关闭 TCP 连接或 UDP 传输	
AT+CIPSTATUS	查询网络连接信息	
AT+CIFSR	查询本地 IP 地址信息	
AT+CIPMODE	查询或设置传输模式	
AT+BLEENABLE	使能 ble 模块	
AT+BLEDISABLE	失能 ble 模块	
AT+BLENAME	设置名称	
AT+BLEADVSTART	开启蓝牙广播	
AT+BLEADV STOP	停止蓝牙广播	
AT+BLEADVDATA	设置广播内容	
AT+BLEADVDATA EX	设置广播内容	
AT+BLESCA NRSPDATA	设置扫描回复内容	
AT+BLEPASSTH	开启透传模式	
AT+BLEPASSTHAUTO	自动开启透传模式	

指令	描述	
AT+BLESCA NPA RA M	设置扫描参数	
AT+BLESCA N	开启扫描	
AT+BLESYNC	BLE开始/取消同步	
AT+BLESYNCSTOP	BLE 停止同步	
AT+BLECONN	BLE 建立连接	
AT+BLESCONNPARAM	设置/查询连接参数	
AT+BLEDISCONN	BLE断开连接	
AT+BLEMTU	更新/查询 mtu	
AT+BLEPHY	更新/查询 phy	
AT+BLEDATALEN	Data length extension	
AT+BLEADDR	查询/设置 ble bd address	
AT+BLESETA UTH	配置 AUTHENTICATION	
AT+BLEPA IR	发起配对	
AT+BLEENCRY PT	启动加密	
AT+BLEPASSKEY	输入 passkey	
AT+BLECOMPARE	输入 compare 结果	
AT+BLELISTENCDEV	列出 bond device 列表	
AT+BLECLEA RENCDEV	移除 bond 设备	
AT+BLEGATTSSVC	列出本地注册的 service	
AT+BLEGATTSCHAR	列出对应 service 的 characteristic	
AT+BLEGATTSDESC	列出对应 characteristic 的 descriptor	
AT+BLEGATTSLISTALL	列出本地所有 service 中信息	
AT+BLEGATTSNTF	发送 notification	
AT+BLEGATTSIND	发送 indication	
AT+BLEGATTSSETATTRVAL	设置 characteristic 的值	
AT+BLEGATTCDISCSVC	发现 service	
AT+BLEGATTCDISCCHAR	发现 characteristic	
AT+BLEGATTCDISCDESC	发现 descriptor	
AT+BLEGATTCRD	Read attribute value	
AT+BLEGATTCWR	Write attribute value	

3. AT 基础指令集

3.1. AT

表 3-1. 进入 AT 指令模式

指令	参数	响应
执行指令		执行结果
AT		
示例 :		
AT		
正确响应:		
ОК		

3.2. ATQ

表 3-2. 离开 AT 指令模式

指令	参数	响应
执行指令		执行结果
ATQ		
示例:		
ATQ		
正确响应:		
OK		

3.3. AT+HELP

表 3-3. 查询所有 AT 指令

指令	参数	响应			
执行指令		显示全部 AT 命令列表			
AT+HELP					
示例:					
AT+HELP					
正确响应:					
AT COMMAND LIST:					
ATQ					
AT+HELP					
ОК					

3.4. AT+RST

表 3-4. 模块复位指令

指令	参数	响应		
执行指令		重启消息		
AT+RST				
示例 :				
AT+RST				
正确响应:				
ОК				
ALW: MBL: First print.				
ALW: MBL: Boot from Image 0.				
ALW: MBL: Validate Image 0 OK.				
ALW: MBL: Jump to Main Image (0x0800a000).				
READY				

3.5. AT+GMR

表 3-5. 查询版本信息

指令	参数	响应(类似格式信息)			
执行指令		相关版本信息			
AT+GMR					
示例 :					
AT+GMR					
正确响应:					
SDK revision: v1.0.0					
SDK git revision: 0.1.0-487-gb2937736-b2937736b33393b3					
SDK build date: 2023/07/03 15:23:20					
ОК					

3.6. AT+TASK

表 3-6. 查询当前操作系统所有任务

指令				参数	响应(类似格式信息)
执行指令					当前 task 信息列表
AT+TASK					
示例 :					
AT+TASK					
正确响应:					
ATCMD	X 2	0 402	2	0x2001a780	

	指令				参数	响应(类似格式信息)
•••						
RX		В	18	416 6	0x200203c8	
ОК						

3.7. AT+HEAP

表 3-7. 查询当前操作系统空余 HEAP

指令	参数	响应(类似格式信息)		
执行指令		heap 使用情况		
AT+HEAP				
示例 :				
AT+HEAP				
正确响应:				
Total free heap size = 113784				
Total min free heap size = 109480				
ок				

3.8. AT+SYSRAM

表 3-8. 查询当前空余 SRAM 空间

指令	参数	响应(类似格式信息)			
执行指令		剩余 SRAM 空间			
AT+SYSRAM					
示例:					
AT+SYSRAM					
正确响应:					
Free SRAM size = 1084/2					
OK					

3.9. AT+UART

表 3-9. 查询或设置串口参数

指令	参数	响应
帮助指令		+UART= <baudrate>,<databits>,<stopb< td=""></stopb<></databits></baudrate>
AT+UART=?		its>, <parity>,<flow control=""></flow></parity>
查询指令		当前串口参数
AT+UART?		
执行指令	<baudrate>: UART 波特率</baudrate>	执行结果

	指令	参数	响应
	AT+UART= <baudrate>,<da< td=""><td><databits>:数据位</databits></td><td></td></da<></baudrate>	<databits>:数据位</databits>	
	tabits>, <stopbits>,<parity>,</parity></stopbits>	8: 8 bit	
	<flow control=""></flow>	<stopbits>:</stopbits> 停止位	
		1: 1 bit	
		2: 1.5 bit	
		3: 2 bit	
		<parity>:</parity> 校验位	
		0: None	
		1: Odd	
		2: Even	
		<flow control="">: 流控</flow>	
		0:不使能流控	
		1: 使能 RTS	
		2: 使能 CTS	
		3: 同时使能 RTS 和 CTS	
	示例 :		
	AT+UART=115200,8,1,0,0		
	正确响应:		
	OK		

3.10. AT+TRANSINTVL

表 3-10. 设置或查询透传模式下的数据发送间隔

指令	参数	响应
帮助指令		+TRANSINTVL= <interval></interval>
AT+TRANSINTVL=?		
查询指令		当前数据发送间隔
AT+TRANSINTVL?		+TRANSINTVL: <interval></interval>
执行指令	<interval>:数据发送间隔,毫</interval>	执行结果
AT+TRANSINTVL	秒, 默认值 20 毫秒	
= <interval></interval>		
示例:		
AT+TRANSINTVL=800		
正确响应:		
ОК		

4. AT WIFI 指令集

4.1. AT+CWMODE_CUR

表 4-1. 查询或设置 WiFi 当前工作模式

指令	参数	响应
帮助指令		+CWMODE_CUR: <mode:0-2></mode:0-2>
AT+CWMODE_CUR=?		
查询指令		当前工作模式
AT+CWMODE_CUR?		+CWMODE_CUR: <mode></mode>
执行指令	<mode>:</mode>	执行结果
AT+CWMODE_CUR= <mode></mode>	0: MONITOR模式	
	1: STA 模式	
	2: Soft AP 模式	
示例 :		
AT+CWMODE_CUR=2		
正确响应:		
ОК		

4.2. AT+CWJAP_CUR

表 4-2. 查询已连接 AP 信息或连接 AP

指令	参数	响应
帮助指令		+CWJAP_CUR= <ssid>,<pw d=""></pw></ssid>
AT+CWJAP_CUR=?		
查询指令		+CWJAP_CUR:
AT+CWJAP_CUR?		<ssid>,<mac>,<channel>,<rssi></rssi></channel></mac></ssid>
执行指令	<ssid>: 字符串参数</ssid>	执行结果
AT+CWJAP_CUR= <ssid>,</ssid>	<pw d="">: 字符串参数</pw>	
<pw d=""></pw>		
示例1:		
AT+CWJAP_CUR="totolink",	"12345678"	
正确响应 1 :		
WIFI CONNECTED		
ОК		
示例 2:		
AT+CWJAP_CUR="tplink",""		
正确响应 2:		
WIFI CONNECTED		

指令	参数	响应
ОК		

4.3. AT+CWLAP

表 4-3. 扫描并列出周围 AP 的信息

指令	参数	响应	
帮助指令		+CWLAP: [ssid]	
AT+CWLAP=?			
执行指令	<ssid>: 字符串参数</ssid>	扫描结果	
AT+ CWLAP[= <ssid>]</ssid>		+CWLAP:	
		<ssid>,<rssi>,<mac>,<channel>,<encr< td=""></encr<></channel></mac></rssi></ssid>	
		ypt>	
示例 1:			
AT+CWLAP			
正确响应 1:			
+CWLAP: iQOO Neo5, -44,	d6:4f:86:cb:c8:d0, 1, WPA2 C	CMP;	
+CWLAP: GD-guest, -43, 08:3a:38:cc:2f:d1, 1, OPEN ;			
+CWLAP: OpenWrt, -33, c4:70:ab:d9:bd:11, 1, OPEN ;			
+CWLAP: GD-internet, -44, 08:3a:38:cc:2f:d0, 1, OPEN ;			
+CWLAP: Redmi K40, -56,	ba:fa:07:50:63:f6, 1, WPA2 CC	MP;	
+CWLAP: D-Link_DIR-822,	-30, 1c:5f:2b:fd:be:60, 1, WPA2	CCMP;	
+CWLAP: iPhone 24 Pro Max Ultr, -48, fa:da:47:72:f0:b3, 2, WPA2 CCMP;			
+CWLAP: TP-LINK_8659, -20, 68:77:24:bd:86:59, 4, WPA2/WPA3 CCMP;			
ОК			
示例 2:			
AT+CWLAP= "xiaomi_4a"			
正确响应 2:			
+CWLAP: xiaomi_4a,	-55, 88:c3:97:0d:c3:70, 1, 0	OPEN	
ОК			

Note: 如果带参数 ssid, 就只显示相应 AP 信息。

4.4. AT+CWSTATUS

表 4-4. 查询 WiFi 状态, STA 或者 SoftAP 或者 MONITOR

指令	参数	响应
执行指令		+CWSTATUS: STA, connected,
AT+CWSTATUS		<ssid>,<channel>,<mac>,</mac></channel></ssid>
		或

指令		参数		响应	
			+CWSTATUS:	MONITOR,	<channel>,</channel>
			<mac></mac>		
			或		
			+CWSTATUS:	STA, discon	nected
			或		
			+CWSTATUS:	SoftAP,	<ssid>,</ssid>
			<passw ord="">,</passw>	<channel></channel>	
示例:					
AT+CWSTATUS					
正确响应:					
+CWSTATUS: STA	, connec	ted, xiaomi_4a, 1, 76:ba:ed:20:22:	a2		
ОК					

4.5. AT+CWQAP

表 4-5.	断开	AP
--------	----	----

指令	参数	响应
执行指令		断开连接消息
AT+CWQAP		
示例 :		
AT+CWQAP		
正确响应:		
OK		

4.6. AT+CWSAP_CUR

表 4-6. 启动 SoftAP

指令	参数	响应
帮助指令		+CWSAP_CUR: <ssid>,<pw d="">,<chl:1-< td=""></chl:1-<></pw></ssid>
AT+CWSAP_CUR=?		13>, <hidden:0-1></hidden:0-1>
执行指令	<ssid>:</ssid> 字符串参数	执行结果
AT+CWSAP_CUR= <ssid>,</ssid>	<pw d="">:</pw> 字符串参数	
<pw d="">,<chl>,<hidden></hidden></chl></pw>	<chl>: 1, 13</chl>	
	<hidden>:</hidden>	
	0: SSID Broadcast	
	1: Hidden SSID	
示例:		-
AT+CWSAP_CUR="test_ap"	,"12345678",6,0	
正确响应:		
ОК		

4.7. AT+CWLIF

表 4-7. 查看连接上 SoftAP 的客户端

指令	参数	响应	
执行指令		+CWLIF: [0] <mac1></mac1>	
AT+CWLIF		+CWLIF: [1] <mac2></mac2>	
示例:			
AT+CWLIF			
正确响应:			
+CWLIF: [0] e0:2b:e9:8a:46:ac			
ок			

4.8. AT+CWAUTOCONN

表 4-8. 设置开机是否自动连接 AP

指令	参数	响应	
帮助指令		+CWAUTOCONN:(0-1)	
AT+CWAUTOCONN=?			
查询指令		+CWAUTOCONN: <enable></enable>	
AT+CWAUTOCONN?			
执行指令	<enable>: 0~1</enable>	执行结果	
AT+CWAUTOCONN= <ena< td=""><td>0: disable auto connect</td><td></td></ena<>	0: disable auto connect		
ble>	1: enable auto connect		
示例:			
AT+CWAUTOCONN=1			
正确响应:			
OK			
补充说明:			
+CWAUTOCONN 设置为1后,连接AP成功就会将AP信息保存到FLASH中,重启后就会自动根据			
FLASH 中存储的 AP 信息连接	-LASH 中存储的 AP 信息连接 AP。		

5. AT TCPIP 指令集

5.1. AT+PING

表 5-1. Ping 功能

指令	参数	响应
帮助指令		+PING: <ip domain="" name="" or=""></ip>
AT+PING=?		
执行指令	<ip>: 字符串,可以是 IP 地址或</ip>	+ <delay_time></delay_time>
AT+PING= <ip domain="" or=""></ip>	域名	+ <delay_time></delay_time>
示例 1 :		
AT+PING="192.168.0.1"		
正确响应 1:		
+80		
+47		
+49		
+55		
+53		
ОК		
示例 2 注: 使用网址时, 必须	页要接入互联网, 否则会失败。	
AT+PING="www.baidu.com"		
正确响应 2 :		
+149		
+47		
+51		
+47		
+112		
ОК		

5.2. AT+CIPSTA

表 5-2. 查询或设置本地 STA 的 IP 地址

指令	参数	响应
帮助指令		+CIPSTA: <ip>,<netmask>,<gw></gw></netmask></ip>
AT+CIPSTA=?		
查询指令		+CIPSTA: <ip></ip>
AT+CIPSTA?		+CIPSTA: <netmask></netmask>
		+CIPSTA: <gw></gw>
执行指令	<ip>: 字符串参数</ip>	执行结果
AT+CIPSTA= <ip>,<netmas< td=""><td><netmask>:字符串参数</netmask></td><td></td></netmas<></ip>	<netmask>:字符串参数</netmask>	

指令	参数	响应
k>, <gw></gw>	<gw></gw> : 字符串参数	
示例 1:		
AT+CIPSTA?		
正确响应 1:		
+CIPSTA: 192.168.185.1		
+CIPSTA: 255.255.255.0		
+CIPSTA: 192.168.185.43		
ОК		
示例 2:		
AT+CIPSTA="192.168.185.4	5","255.255.255.0","192.168.185.	1"
正确响应 2:		
ОК		

5.3. AT+CIPSTART

表 5-3. 建立 TCP 连接或 UDP 传输

指令	参数	响应	
帮助指令		+CIPSTART= <type:tcp or<="" td=""></type:tcp>	
AT+CIPSTART=?		UDP>, <remote ip="">,<remote port="">,[udp</remote></remote>	
		local port],[tcp keep alive:0-1]	
执行指令	<type>:"TCP"or"UDP",字符</type>	执行结果	
AT+CIPSTART= <type>,<re< td=""><td>串参数</td><td>ОК</td></re<></type>	串参数	ОК	
mote ip>, <remote port="">,</remote>	<remote ip="">: Server IP, 字符</remote>	或者 ERROR	
[udp local port] , [tcp keep	串参数		
alive]	<remote port="">: Server Port, 整</remote>		
	型		
	[udp local port] 绑定本机的端口		
	值, 整型		
	[tcp keep alive]: 0 or 1,整型		
示例 1 :			
AT+CIPSTART="TCP","192.7	168.0.2",2001,1		
正确响应 1:			
0,OK			
示例 2.			
AT+CIPSTART="UDP", "192.168.0.2",5001,0			
正确响应 2:			
1,OK			
示例 3:固定 UDP 通信对端			

AT+CIPS TA RT="UD P", "192.168.0.2",5001,8888
正确响应 3:
3,OK
注:该项测试需要在测试机上运行 sokit 工具。

5.4. AT+CIPSEND

表 5-4. 发送数据

指令	参数	响应	
帮助指令		Usage:	
AT+CIPSEND=?		Normal Mode Usage:	
		+CIPSEND= <fd:0-4>,<ien>,[<remote< td=""></remote<></ien></fd:0-4>	
		ip>, <remote port="">]</remote>	
		PassThrough Mode Usage:	
		+CIPS END	
进入普通传输模式,	<fd>:</fd>	> <input from="" keyboard=""/>	
执行指令	0~4,网络连接 ⅠD 号,整型	SEND OK	
AT+CIPSEND= <fd>,<len>,[</len></fd>	<len>:</len>		
<remote ip="">, <remote< td=""><td><= 2048,发送长度,整型</td><td></td></remote<></remote>	<= 2048,发送长度,整型		
port>]	[remote ip]:		
	远端 IP,字符串参数		
	[remote port]:		
	远端端口,整型		
进入 WiFi 透传模式,执行		ОК	
指令		> <input_from keyboad=""></input_from>	
AT+CIPSEND			
示例 1:			
AT+CIPSEND=0,10			
正确响应 1:			
>SEND OK			
ок			
示例 2:			
AT+CIPSEND=1,20,"192.168	AT+CIPSEND=1,20,"192.168.0.2",5001		
正确响应 2:			
>SEND OK			
ок			
示例3: GD32VW553作为TCP 客户端,建立单连接,实现UART Wi-Fi透传 连接到路由器 AT+CWJAP="test_ap","1234567890"			
查调GD32VW553设备IP地址,以192.168.1.27为例			

PC与GD32VW553设备连接到同一个路由器,并运行网络调试工具,创建一个TCP服务器。例如IP地 址为192.168.1.2,端口号为5678。GD32VW553连接该TCP服务器 AT+CIPSTART="TCP","192.168.1.2",5678,0
进入透传接收模式 AT+CIPMODE=1
进入透传发送模式,并发送数据 AT+CIPSEND OK >
停止发送数据,在透传发送数据过程中,若识别到单独的一包数据+++,则系统会退出透传发送,此 时请至少等待1秒,再发下一条命令。 +++
退出UART WiFi透传接收模式 AT+CIPMODE=0
关闭TCP连接 AT+CIPCLOSE
注:
进入 WiFi 透传模式,GD32VW553 设备每次最大接收 8192 字节,最大发送 2920 字节。如果收到的数据长度大于等于 2920 字节,数据会被分为 2920 字节一组的块进行发送,否则会等待 20 毫秒(您可以通过 AT+TRANSINTVL 命令配置此间隔)或等待收到的数据大于等于 2920 字节再发送数据。当输入单独一包+++时,退出透传模式下的数据发送模式,请至少间隔 1 秒再发送下一条 AT 命令。 AT+CIPSEND 命令必须在开启透传模式以及单连接下使用。若为 WiFi-UDP 透传,AT+CIPSTART 命令的 <udp local="" port="">必须指定。 该项测试需要在测试机上运行 sokit 或其他网络测试工具。</udp>
透传模式仅支持 TCP 单连接和 UDP 固定通信对端的情况。

5.5. AT+CIPSERVER

表	5-5.	启动	TCP	服务器
---	------	----	-----	-----

指令	参数	响应
帮助指令		+CIPSERVER: <mode:0-1>,[port]</mode:0-1>
AT+CIPSERVER=?		
执行指令	<mode>:</mode>	执行结果
AT+CIPSERVER= <mode>,</mode>	0: 关闭服务器	
[port]	1: 建立服务器	
	[port]:	
	可选参数, 整型	
示例:		

AT+CIPSERVER=1,3001	
正确响应:	
OK	

5.6. AT+CIPCLOSE

表 5-6. 关闭 TCP 连接或 UDP 传输

指令	参数	响应
帮助指令		+CIPCLOSE: <fd></fd>
AT+CIPCLOSE=?		
执行指令	<fd>: 0-7,网络连接 ID 号,整</fd>	close <fd></fd>
AT+CIPCLOSE= <fd></fd>	型	
示例:		
AT+CIPCLOSE=0		
正确响应		
close 0		
ОК		

5.7. AT+CIPSTATUS

表 5-7. 查询网络连接信息

指令	参数	响应		
执行指令		STATUS: 5		
AT+CIPSTATUS				
示例 :				
AT+CIPSTATUS				
正确响应:	正确响应:			
STATUS: 2				
OK				
补充说明: STATUS				
 STA 己和 AP 建立连接并且获得 IP 地址 STA 已建立 TCP 连接或 UDP 传输客户端 				
4: DHCP 处理中 5: 其他状态				

5.8. AT+CIFSR

表 5-8. 查询本地 IP 地址信息

指令	参数	响应
执行指令		+CIFSR:APIP, <ip></ip>
AT+CIFSR		+CIFSR:APMAC, <mac></mac>
		Or

指令	参数	响应	
		+CIFSR:STA IP, <ip></ip>	
		+CIFSR:STAMAC, <mac></mac>	
示例:			
AT+CIFSR			
正确响应:			
+CIFSR: STA IP,192.168.2.3			
+CIFSR:STA MAC,76:ba:ed:20:22:a2			
ОК			

5.9. AT+CIPMODE

表 5-9. 设置或查询传输模式

指令	参数	响应
帮助指令		+CIPMODE= <mode:0-1></mode:0-1>
AT+CIPMODE=?		
查询指令		当前传输模式
AT+CIPMODE?		+CIPMODE: <mode></mode>
执行指令	<mode>: 传输模式</mode>	执行结果
AT+CIPMODE = <mode></mode>	0: 正常传输模式	
	1: WiFi 透传接收模式	
示例:		
AT+CIPMODE=1		
正确响应:		
ок		
注:		
WiFi 透传接收模式, 仅支持 TCP 单连接、UDP 固定通信对端的情况。		
WiFi透传接收模式,每次接收的数据最大长度是 2920 字节。		

6. AT BLE 指令集

6.1. AT+BLEENABLE

表 6-1. 使能 ble 模块

指令	参数	响应
执行指令		执行结果
AT+BLEENABLE		
示例 1:		
AT+BLEENABLE		
正确响应:		
ОК		

6.2. AT+BLEDISABLE

表 6-2. 失能 ble 模块

指令	参数	响应
执行指令		执行结果
AT+BLEDISABLE		
示例 1:		
AT+BLEDISABLE		
正确响应:		
OK		

6.3. AT+BLENAME

表 6-3. 设置名称

指令	参数	响应
帮助指令		+BLENAME= <name></name>
AT+BLENAME=?		
查询指令		+BLENAME: <name></name>
AT+BLENAME?		
执行指令	<name>: 设备名称</name>	执行结果
AT+BLENAME= <name></name>		
示例 1 :		
AT+BLENAME?		
正确响应 1 :		
+BLENAME:GD-BLE-01:23:45:67:89:ab		
ОК		

指令	参数	响应
示例 2 :		
AT+BLENAME=test 正确响应 2:		
ОК		
备注:		
1.设置后广播中 name 也会同	步改变。	

6.4. AT+BLEADVSTART

表 6-4. 开启蓝牙广播

指令	参数	响应
帮助指令		+BLEADVSTART= <type>,[intv],[ch_ma</type>
AT+BLEADVSTART=?		p],[prop],[pri_phy],[sec_phy],[w l_enable
],[ow n_addr_type],[disc_mode],[addr_t
		ype],[addr]
执行指令	<type>:</type> 广播类型	执行结果
AT+BLEADVSTART= <type< td=""><td>[intv]: 广播间隔</td><td></td></type<>	[intv]: 广播间隔	
>,[intv],[ch_map],[prop],[pri	[ch_map]: 信道选择	
_phy],[sec_phy],[w l_enable	[property]:属性配置	
],[ow n_addr_type],[disc_mo	[pri_phy]: primary 信道 phy	
de],[addr_type],[addr]	[sec_phy]: secondary 信道 phy	
	[wl_enable]: white list 是否使能	
	[ow n_addr_type]:本地地址类型	
	[disc_mode]: 发现模式	
	[addr_type]: 对端地址类型	
	[addr]: 对端地址	
示例 1:		
AT+BLEADVSTART=0		
正确响应 1:		
ОК		

6.5. AT+BLEADVSTOP

表 6-5. 停止蓝牙广播

指令	参数	响应
帮助指令		+BLEADVSTOP= <adv_idx></adv_idx>
AT+BLEADVSTOP=?		
执行指令	< adv_idx > : 广播索引	执行结果
AT+BLEADVSTOP=<		

指令	参数	响应
adv_idx >		
示例 1:		
AT+BLEADVSTOP=0		
正确响应 1:		
ОК		

6.6. AT+BLEADVDATA

表 6-6. 设置广播内容

指令	参数	响应
帮助指令		+BLEADVDATA= <data></data>
AT+BLEADVDATA=?		
执行指令	<data> : 广播内容,为 hex 字</data>	执行结果
AT+BLEADVDATA= <data></data>	符串,例如 AT+BLEADV DATA="	
	020106020941"代表将广播数据	
	设置为" 0x02 0x01 0x06 0x02	
	0x09 0x41"	
示例 1:		
AT+BLEADVDATA="0201060	020941"	
正确响应 1:		
ок		

6.7. AT+BLEADVDATAEX

表 6-7. 设置广播内容

指令	参数	响应
帮助指令		+BLEADVDATA EX
AT+BLEADVDATA EX=?		= <dev_name>,<uuid>,<manufacture< td=""></manufacture<></uuid></dev_name>
		r_data>, <include_pow er=""></include_pow>
执行指令	<dev_name>: 设备名称</dev_name>	执行结果
AT+BLEADVDATA EX	<uuid>: service uuid</uuid>	
= <dev_name>,<uuid>,<ma< td=""><td><manufacturer_data>: 厂家数据</manufacturer_data></td><td></td></ma<></uuid></dev_name>	<manufacturer_data>: 厂家数据</manufacturer_data>	
nufacturer_data>, <include_< td=""><td><include_pow er="">: 是否包含</include_pow></td><td></td></include_<>	<include_pow er="">: 是否包含</include_pow>	
pow er>	pow er	
示例 1:		
AT+BLEADVDATA EX="test",	"a002","2b0c112233",1	
正确响应 1 :		
ОК		

6.8. AT+BLESCANRSPDATA

表 6-8. 设置扫描回复内容

指令	参数	响应
帮助指令		+BLESCANRSPDATA= <data></data>
AT+BLESCANRSPDATA=?		
执行指令	<data> : 广播内容,为 hex 字</data>	执行结果
AT+BLESCANRSPDATA= <dat< td=""><td>符串,例如</td><td></td></dat<>	符串,例如	
a>	AT+BLESCANRSPDATA ="	
	020941"代表将广播数据设置	
	为"0x02 0x09 0x41"	
示例 1:		
AT+BLESCANRSPDATA="02094	41"	
正确响应 1:		
ок		

6.9. AT+BLEPASSTH

表 6-9. 开启透传模式

指令	参数	响应
执行指令		执行结果
AT+BLEPASSTH		
示例 1:		
先开启广播 AT+BLEADVSTART=0,对端与之建立连线		
输入 AT+BLEPASSTH		
开启透传模式		
"+++"退出		
无响应		

6.10. AT+BLEPASSTHAUTO

表 6-10. 自动开启透传模式

指令	参数	响应
帮助指令		+BLEPASSTHAUTO= <enable></enable>
AT+BLEPASSTHAUTO=?		
执行指令	<enable> : 是否开启自动进入透</enable>	执行结果
AT+BLEPASSTHAUTO= <e< td=""><td></td><td></td></e<>		

指令	参数	响应
nable>	传模式	
注:主从都通过同一命令自动起	进入透传模式	
示例 1:		
输入 AT+BLEPASSTHAUTO=1		
先开启广播 AT+BLEADVSTA	RT=0,或者 AT+BLECONN=0,AB	:89:67:45:23:01(对端地址),建立连
接后自动开启透传模式		
"+++"退出		
正确响应 1 :		
ОК		

6.11. AT+BLEPASSTHCLI

表 6-11. 开启透传模式

指令	参数	响应
执行指令		执行结果
AT+BLEPASSTHCLI		
示例 1:		
AT+BLECONN=0, AB:89:67:45:23:01 (对端地址), 对端与之建立连线		
输入 AT+BLEPASSTHCLI		
开启透传模式		
"+++"退出		
无响应		

6.12. AT+BLESCANPARAM

表 6-12. 设置扫描参数

指令	参数	响应
帮助指令		+BLESCANPARAM= <type>,<own_a< td=""></own_a<></type>
AT+BLESCA NPA RA M=?		ddr_type>, <dup_filt_pol>,<scan_intv< td=""></scan_intv<></dup_filt_pol>
		_1m>, <scan_w in_1m=""></scan_w>
查询指令		+BLESCANPARAM: <type>,<own_a< td=""></own_a<></type>
AT+BLESCA NPA RA M?		ddr_type>, <dup_filt_pol>,<scan_intv< td=""></scan_intv<></dup_filt_pol>
		_1m>, <scan_win_1m></scan_win_1m>
执行指令	<type></type> : 扫描类型	执行结果
AT+BLESCA NPA RA M: <typ< td=""><td><own_addr_type> : 本地地址类</own_addr_type></td><td></td></typ<>	<own_addr_type> : 本地地址类</own_addr_type>	
e>, <own_addr_type>,<dup< td=""><td>型</td><td></td></dup<></own_addr_type>	型	
_filt_pol>, <scan_intv_1m>, <scan_win_1m></scan_win_1m></scan_intv_1m>	<dup_filt_pol> : 重复包过滤政策</dup_filt_pol>	
	<scan_intv_1m>:1M扫描间隔</scan_intv_1m>	
	<scan_w in_1m=""> : 1M 扫描窗口大</scan_w>	

指令	参数	响应
	小	
示例 1:		
AT+BLESCA NPA RA M?		
正确响应 1:		
+BLESCANPARAM:0,0,1,160,32		
ОК		
示例 2:		
AT+BLESCA NPA RA M=0,0,1,160,48		
正确响应 2:		
OK		

6.13. AT+BLESCAN

表 6-13. 开启扫描

指令	参数	响应
帮助指令		+BLESCAN= <enable></enable>
AT+BLESCA N=?		
执行指令	<enable> : 是否开启扫描</enable>	执行结果
AT+BLESCA N= <enable></enable>		
示例 1:		
AT+BLESCA N=1		
正确响应 1 :		
ОК		

6.14. AT+BLESYNC

表 6-14. BLE 开始/取消同步

指令	参数	响应
帮助指令		+BLESYNC= <enable>,<addr_type>,</addr_type></enable>
AT+BLESYNC=?		<addr></addr>
执行指令	<enable> : 是否开启 sync</enable>	执行结果
AT+BLESYNC= <enable>,<</enable>	<addr_type> :本地地址类型</addr_type>	
addr_type>, <addr></addr>	<addr> : 对端地址</addr>	
示例 1:开始同步		
AT+BLESYNC=1,0,AB:89:67:	45:23:01	

	指令	参数	响应
正确响	应 1:		
OK			
示例 2:	: 取消同步		
AT+BL	ESYNC=0		
正确响	应 2:		
OK			

6.15. AT+BLESYNCSTOP

表 6-15. BLE 停止同步

指令	参数	响应
执行指令		执行结果
AT+BLESYNCSTOP		
示例 1:		
AT+BLESYNCSTOP		
正确响应 1:		
ОК		

6.16. AT+BLECONN

表 6-16. BLE 建立连接

指令	参数	响应
帮助指令		+BLECONN= <addr_type>,<addr></addr></addr_type>
AT+BLECONN=?		
执行指令	<pre><addr_type> : 本地地址类型</addr_type></pre>	执行结果
AT+BLECONN= <type>,<ad< td=""><td><addr> :</addr>本地地址</td><td></td></ad<></type>	<addr> :</addr> 本地地址	
dr>		
示例 1:		
对端先开启广播		
AT+BLECONN=0, AB:89:67:	45:23:01(对端地址)	
正确响应 1 :		
OK		

6.17. AT+BLESCONNPARAM

表 6-17. 设置/查询连接参数

指令	参数	响应	
帮助指令		+BLECONNPARM= <conn_idx>,<int< td=""></int<></conn_idx>	
AT+BLECONNPA RA M=?		erval>, <latancy>,<supv_to></supv_to></latancy>	
		+BLECONNPARAM: <conn_idx>,<int< td=""></int<></conn_idx>	
AT+BLECONNPA RA M?			
执行指令	<conn_idx>: 连接索引</conn_idx>	执行结果	
AT+BLECONNPA RAM= <co< td=""><td>< interval > : 连接间隔</td><td></td></co<>	< interval > : 连接间隔		
nn_idx>, <interval>,<latancy< td=""><td>< latancy > : 允许 slave 不交互的</td><td></td></latancy<></interval>	< latancy > : 允许 slave 不交互的		
>, <supv_to></supv_to>	interval 数		
	< supv_to > : 超时时间		
示例 1: 查询连接参数			
先建立连接 AT+BLECONN=0, <addr> 或者先开启广播 AT+BLEADVSTART=0,对端建立连线</addr>			
输入 AT+BLECONNPA RA M?			
正确响应 1:			
+BLECONNPARAM:0,40,0,50	+BLECONNPARA M:0,40,0,500		
ОК			
示例 2: 修改连接参数			
先建立连接 AT+BLECONN=0, <addr>或者先开启广播 AT+BLEADVSTART=0,对端建立连线</addr>			
输入 AT+BLECONNPA RA M=0,50,20,500			
正确响应 2:			
ОК			

6.18. AT+BLEDISCONN

表 6-18. BLE 断开连接

指令	参数	响应
帮助指令		+BLEDISCONN= <conn_idx></conn_idx>
AT+BLEDISCONN=?		
执行指令	<conn_idx> : 连接索引</conn_idx>	执行结果
AT+BLEDISCONN= <conn_< td=""><td></td><td></td></conn_<>		
idx>		
示例 1 .		
先建立连接 AT+BLECONN=0, <addr>或者先开启广播 AT+BLEADVSTART=0,对端建立连线</addr>		

指令	参数	响应
输入 AT+BLEDISCONN=0		
正确响应 1 :		
OK		

6.19. AT+BLEMTU

表 6-19. 更新/查询 mtu

指令	参数	响应
帮助指令		+BLEMTU= <conn_idx>,<pref_mtu></pref_mtu></conn_idx>
AT+BLEMTU=?		
查询指令		+BLEMTU: <conn_idx>,<mtu_size></mtu_size></conn_idx>
AT+BLEMTU?		
执行指令	<conn_idx>: 连接索引</conn_idx>	执行结果
AT+BLEMTU= <conn_idx>,</conn_idx>	<pref_mtu>:期望 mtu</pref_mtu>	
<pref_mtu></pref_mtu>		
示例 1:		
先建立连接 AT+BLECONN=0	, <addr>或者先开启广播 AT+BLEAD</addr>	DVSTART=0,对端建立连线
输入 AI+BLEMIU?		
止佣呃应 1:		
+BLEMTU:0,23		
ОК		
示例 2: 史新 MTU		
先建立连接 AT+BLECONN=0	, <addr></addr>	
输入 AT+BLEMTU=0,1000		
正确响应 2:		
OK		

6.20. AT+BLEPHY

表	6-20.	更新/查询phy	
---	-------	----------	--

指令	参数	响应
帮助指令		+BLEPHY = <conn_idx>,<tx_phy>,<r< td=""></r<></tx_phy></conn_idx>
AT+BLEPHY=?		x_phy>, <phy_opt></phy_opt>

指令	参数	响应
查询指令		+BLEPHY: <conn_idx>,<tx_phy>,<rx< td=""></rx<></tx_phy></conn_idx>
AT+BLEPHY ?		_phy>
执行指令	<conn_idx>: 连接索引</conn_idx>	执行结果
AT+BLEPHY= <conn_idx>,<</conn_idx>	<tx_phy>: tx phy</tx_phy>	
tx_phy>, <rx_phy>,<phy_op< td=""><td><rx_phy>: rx phy</rx_phy></td><td></td></phy_op<></rx_phy>	<rx_phy>: rx phy</rx_phy>	
t>	<phy_opt>: coded phy option</phy_opt>	
示例 1: 查询 phy		
先建立连接 AT+BLECONN=0	, <addr>或者先开启广播 AT+BLEAD</addr>)VSTART=0,对端建立连线
输入 AT+BLEPHY?		
正确响应 1:		
+BLEPHY:0,0,0		
ОК		
示例 2:更新 phy		
先建立连接 AT+BLECONN=0	, <addr>或者先开启广播 AT+BLEAD</addr>)VSTART=0,对端建立连线
输入 AT+BLEPHY=0,1,1,0		
正确响应 2:		
ОК		

6.21. AT+BLEDATALEN

表 6-21. Data length extension

指令	参数	响应
帮助指令		+BLEDATALEN= <conn_idx>,<tx_oct< td=""></tx_oct<></conn_idx>
AT+BLEDATALEN=?		>
执行指令	 <conn_idx> : 连接索引</conn_idx>	执行结果
AT+BLEDATALEN= <conn_i< td=""><td><tx_oct> : 期望的 payload 长度</tx_oct></td><td></td></conn_i<>	<tx_oct> : 期望的 payload 长度</tx_oct>	
dx>, <tx_oct></tx_oct>		
示例 1:		
先建立连接 AT+BLECONN=0, <addr>或者先开启广播 AT+BLEADVSTART=0,对端建立连线</addr>		
输入 AT+BLEDATALEN=0,200		
正确响应 1:		
ОК		

6.22. AT+BLEADDR

表 6-22. 査询/设置 ble bd address

指令	参数	响应
帮助指令		+BLEADDR= <bd_addr></bd_addr>
AT+BLEADDR=?		
查询指令		+BLEADDR: <bd_addr></bd_addr>
AT+BLEADDR?		
执行指令	< bd_addr > : ble bd address	执行结果
AT+BLEADDR= <bd_addr></bd_addr>		
示例 1: 查询 ble bd addres	S	
AT+BLEADDR?		
正确响应 1:		
+BLEBDADDR:77:66:55:44:3	3:22	
ОК		
示例 2: 设置 ble bd address		
AT+BLEADDR=22:33:44:55:66:77		
正确响应 2:		
ОК		

6.23. AT+BLESETAUTH

表 6-23. 配置 AUTHENTICATION

指令	参数	响应
帮助指令		+BLESETAUTH= <bond>,<mitm>,<s< td=""></s<></mitm></bond>
AT+BLESETAUTH=?		c>, <iocap>,<oob>,<key_size></key_size></oob></iocap>

指令	参数	响应
执行指令	< bond > : bonding flag	执行结果
AT+BLESETAUTH= <bond></bond>	0x00: no bonding	
, <mitm>,<sc>,<iocap>,<oo< td=""><td>0x01: bonding</td><td></td></oo<></iocap></sc></mitm>	0x01: bonding	
D>, <key_size></key_size>	<mitm>: mitm flag</mitm>	
	0x00: mitm protection not required	
	0x01: mitm protection required	
	< sc >: secure connections flag	
	0x00: secure connections pairing	
	is not supported	
	0x01: secure connections pairing	
	is supported	
	< iocap>: io capability to set	
	0x00: display only	
	0x01: display yes no	
	0x02: keyboard only	
	0x03: no input no output	
	0x04: keyboard display	
	<oob>: oob flag for authention</oob>	
	[key size]: encryption key size	
	requirement, default is 16 if not set	
示例 1: 配置 AUTHENTICAT	ION	
AT+BLESETAUTH=1,0,0,3,0,	16	
正确响应 1:		
ОК		

6.24. AT+BLEPAIR

表 6-24. 发起配对

指令	参数	响应
帮助指令		+BLEPAIR= <conidx></conidx>
AT+BLEPAIR=?		
执行指令	<conidx>: 连接索引</conidx>	执行结果
AT+BLEPAIR= <conidx></conidx>		
示例 1:发起配对		
先建立连接 AT+BLECONN=0, <addr>或者先开启广播 AT+BLEADVSTART=0,对端建立连线</addr>		
输入 AT+BLEPA IR=0		
正确响应 1 :		

指令	参数	响应
ОК		

6.25. AT+BLEENCRYPT

表 6-25. 启动加密

指令	参数	响应
帮助指令		+BLEENCRYPT= <conidx></conidx>
AT+BLEENCRYPT=?		
执行指令 AT+BLEENCRYPT= <coni dx ></coni 	< conidx > : 连接索引	执行结果
示例 1 :启动加密(需要之前	配对过的设备)	
先建立连接 AT+BLECONN=0	, <addr>或者先开启广播 AT+BLEAD</addr>	VVSTART=0,对端建立连线
输入 AT+BLEENCRY PT=0		
正确响应 1:		
ОК		

6.26. AT+BLEPASSKEY

表 6-26. 输入 passkey

指令	参数	响应
帮助指令		+BLEPASSKEY= <conidx>,<passk< td=""></passk<></conidx>
AT+BLEPASSKEY=?		ey>
执行指令	< conidx > : 连接索引	执行结果
AT+BLEPASSKEY= <coni< td=""><td><passkey>: passkey</passkey></td><td></td></coni<>	<passkey>: passkey</passkey>	
dx>, <passkey></passkey>		
示例 1. 输入 passkey		
输入 AT+BLESETAUTH=1,1,0	0,2,0,16	
先建立连接 AT+BLECONN=0	, <addr>或者先开启广播 AT+BLEAD</addr>	VSTART=0,对端建立连线
输入 AT+BLEPASSKEY=0	,123456(输入显示的值)	
正确响应 1 :		
ОК		

指令	参数	响应

6.27. AT+BLECOMPARE

表 6-27. 输入 compare 结果

指令	参数	响应
帮助指令		+BLECOMPARE= <conidx>, <value></value></conidx>
AT+BLECOMPARE=?		
执行指令	< conidx > : 连接索引	执行结果
AT+BLECOMPARE= <conid< td=""><td><value>: 比较结果</value></td><td></td></conid<>	<value>: 比较结果</value>	
x>, <value></value>		
示例 1: 制入 compare 结约	未	
输入 AT+BLESETAUTH=1,1,	1,4,0,16	
先建立连接 AT+BLECONN=0, <addr>或者先开启广播 AT+BLEADVSTART=0,对端建立连线</addr>		
AT+BLECOMPARE=0,1		
正确响应 1 :		
ОК		

6.28. AT+BLELISTENCDEV

表 6-28. 列出 bond device 列表

指令	参数	响应
查询指令		+BLEADDR: <dev_idx><addr></addr></dev_idx>
AT+BLELISTENCDEV?		
示例 1:列出 bond device 列	表	
需要先有设备配对过		
AT+BLELISTENCDEV?		
正确响应 1 :		
+BLELISTENCDEV=0,AB:89:67:45:23:01		
+BLELISTENCDEV=1,D0:20:	DD:EE:5C:3C	
ОК		

6.29. AT+BLECLEARENCDEV

表 6-29. 移除 bond 设备

指令	参数	响应
帮助指令		+BLECLEARENCDEV= <dev_idx></dev_idx>
AT+BLECLEARENCDEV		
=?		
执行指公	< day_idy > . 设久安引	山
		次日元本
AI+BLECLEARENCDEV=<		
dev_idx>		
示例 1: 输入移除 bond 设备		
需要先有设备配对过		
AT+BLECLEA RENCDEV=0		
正确响应 1:		
ОК		

6.30. AT+BLEGATTSSVC

表 6-30. 列出本地注册的 service

指令	参数	响应
查询指令		+BLEGATTSSVC: <svc_id><uuid></uuid></svc_id>
AT+BLEGATTSSVC?		
示例 1:列出本地注册的 serv	vice	
AT+BLEGATTSSVC?		
正确响应 1 :		
+BLEGATTSSV C:0,0000000	00000000000000000000000000000000000000	
+BLEGATTSSV C:1,00001111	00000000123456789ABCDEF,1	
+BLEGATTSSV C:2,0000000	000000000000000000000000000000000000000	
OK		

6.31. AT+BLEGATTSCHAR

表 6-31. 列出对应 service 的 characteristic

指令	参数	响应
帮助指令		+BLEGATTSCHAR= <svc_idx></svc_idx>
AT+BLEGATTSCHAR=?		
执行指令	<svc_idx>: service 索引</svc_idx>	执行结果
AT+BLEGATTSCHAR= <sv< td=""><td></td><td>+BLEGATTSCHAR:<uuid><value_i< td=""></value_i<></uuid></td></sv<>		+BLEGATTSCHAR: <uuid><value_i< td=""></value_i<></uuid>
c_idx>		ndex>
示例 1:列出本地注册的 cha	racteristic	
AT+BLEGATTSCHAR=1		
正确响应 1:		
+BLEGATTSCHAR:0000222	2000000000123456789ABCDEF,2	
+BLEGATTSCHAR:0000333	300000000123456789ABCDEF,4	
+BLEGATTSCHAR:0000444	4000000000123456789ABCDEF,6	
UK		

6.32. AT+BLEGATTSDESC

表 6-32. 列出对应 characteristic 的 descriptor

指令	参数	响应
帮助指令		+BLEGATTSDESC= <svc_idx>,<cha< td=""></cha<></svc_idx>
AT+BLEGATTSDESC=?		r_idx>
执行指令	<svc_idx>: service 索引</svc_idx>	执行结果
AT+BLEGATTSDESC= <sv< td=""><td><char_idx>: characteristic 索引</char_idx></td><td>+BLEGATTSDESC:<uuid><desc_id< td=""></desc_id<></uuid></td></sv<>	<char_idx>: characteristic 索引</char_idx>	+BLEGATTSDESC: <uuid><desc_id< td=""></desc_id<></uuid>
c_idx>, <char_idx></char_idx>		x>
示例 1:列出对应 characteris	stic 的 descriptor	
AT+BLEGATTSDESC=1,6		
正确响应 1:		
+BLEGATTSDESC:0000000	0000000000000000000000002902,7	
OK		

6.33. AT+BLEGATTSLISTALL

表 6-33. 列出本地所有 service 中信息

指令	参数	响应	
查询指令		+BLEGATTSSVC: <svc_id><uuid></uuid></svc_id>	
AT+BLEGATTSLISTALL		+BLEGATTSCHAR: <uuid><value_index></value_index></uuid>	
?		+BLEGATTSDESC: <uuid><desc_idx></desc_idx></uuid>	
		<u> </u>	
示例 1: 列出本地所有 se	rvice 中信息		
AT+BLEGATTSLISTALL?			
正确响应 1:			
+BLEGATTSCHAR:0000000	00000000000000000000000000000000	29,2	
+BLEGATTSCHAR:0000000	00000000000000000000000000000000000000	\$24,4	
+BLEGATTSCHAR:0000000	00000000000000000000000000000000000000	\$25,6	
+BLEGATTSCHAR:0000000	00000000000000000000000000000000000000	.27,8	
+BLEGATTSCHAR:0000000	00000000000000000000000000000000000000	.26,10	
+BLEGATTSCHAR:0000000	00000000000000000000000000000000000000	28,12	
+BLEGATTSCHAR:0000000	00000000000000000000000000000000000000	.23,14	
+BLEGATTSCHAR:0000000	00000000000000000000000000000000000000	.2A,16	
+BLEGATTSCHAR:0000000	0000000000000000000000000000000	.50,18	
+BLEGATTSSV C:1,0000 111	1000000000123456789ABCI	DEF,1	
+BLEGATTSCHAR:0000222	2000000000123456789ABC	DEF,2	
+BLEGATTSCHAR:0000333	3000000000123456789ABC		
+BLEGATTSCHAR:0000444	+BLEGATTSCHAR:00004444000000000123456789ABCDEF,6		
+BLEGATTSDESC:000000000000000000000000000000000000			
+BLEGATTSSV C:2,000000000000000000000000000000000000			
+BLEGATTSCHAK:000000000000000000000000000000000000			
TELEGATI SCHAR.000000000000000000000000000000000000			
OK CONTRACTOR	J0000000000000000000000000000000000000	02,0	
UK			

6.34. AT+BLEGATTSNTF

指令	参数	响应
帮助指令		+BLEGATTSNTF= <conn_idx>,<svc< td=""></svc<></conn_idx>
AT+BLEGATTSNTF=?		_id>, <char_idx>,<tx_len></tx_len></char_idx>
执行指令 AT+BLEGATTSNTF= <conn _idx>,<svc_id>,<char_idx>, <tx_len></tx_len></char_idx></svc_id></conn 	<conn_idx> : 连接索引 <svc_id>: service id <char_idx>: characteristic 索引 <tx_len>: 数据长度</tx_len></char_idx></svc_id></conn_idx>	执行结果
示例 1:发送 notification		

表 6-34. 发送 notification

指令	参数	响应
先开启广播 AT+BLEADVSTA	RT=0,对端建立连线	
输入 AT+BLEGATTSNTF=0,1	,6,5	
>		
输入 AAAAA(对端会收到数据)		
正确响应 1 .		
OK		

6.35. AT+BLEGATTSIND

表 6-35. 发送 indication

指令	参数	响应
帮助指令		+BLEGATTSIND= <conn_idx>,<svc_< td=""></svc_<></conn_idx>
AT+BLEGATTSIND =?		id>, <char_idx>,<tx_len></tx_len></char_idx>
执行指令	<conn_idx> : 连接索引</conn_idx>	执行结果
AT+BLEGATTSIND= <conn< td=""><td><svc_id>: service id</svc_id></td><td></td></conn<>	<svc_id>: service id</svc_id>	
_idx>, <svc_id>,<char_idx>,</char_idx></svc_id>	<char_idx>: characteristic 索引</char_idx>	
<tx_len></tx_len>	<tx_len>:</tx_len> 数据长度	
示例 1:发送 indication		
先开启广播 AT+BLEADVSTA	\RT=0 ,对端建立连线	
输入 AT+BLEGATTSIND=0,1	,6,5	
>		
输入 AAAAA(对端会收到数排	居)	
正确响应 1:		
ОК		

6.36. AT+BLEGATTSSETATTRVAL

表 6-36. 设置 characteristic 的值

指令	参数	响应
帮助指令		+BLEGATTSSETATTRVAL= <conn_i< td=""></conn_i<>
AT+BLEGATTSSETATT		dx>, <svc_id>,<char_idx>,<tx_len></tx_len></char_idx></svc_id>
RVAL=?		
执行指令	<conn_idx> :连接索引</conn_idx>	执行结果
AT+BLEGATTSSETATTRV	<svc_id>: service id</svc_id>	
AL= <conn_idx>,<svc_id>,<</svc_id></conn_idx>	<char_idx>: characteristic 索引</char_idx>	
cnar_idx>, <tx_ien></tx_ien>	<tx_len>:</tx_len> 数据长度	

指令	参数	响应
示例 1:设置 characteristic f	り 值	
先开启广播 AT+BLEADVSTART=0,对端建立连线		
输入 AT+BLEGATTSSETATTRVAL=0,1,4,5		
>		
输入 AAAAA(本地数据改变)		
正确响应 1:		
ок		

6.37. AT+BLEGATTCDISCSVC

表 6-37. 发现 service

指令	参数	响应
帮助指令		+BLEGATTCDISCSVC= <conn_idx>,</conn_idx>
AT+BLEGATTCDISCSV		<start_hdl>,<end_hdl></end_hdl></start_hdl>
C=?		
执行指令	<conn_idx> : 连接索引</conn_idx>	执行结果
AT+BLEGATTCDISCSVC=	< start_hdl >: start attribute	+BLEGATTCDISCSVC: <start_hdl>,</start_hdl>
<conn_idx>,<start_hdl>,<e< td=""><td>handle</td><td><end_hdl>,<uuid></uuid></end_hdl></td></e<></start_hdl></conn_idx>	handle	<end_hdl>,<uuid></uuid></end_hdl>
nd_hdl>	< end_hdl >: end attribute handle	
示例 1:发现 service		
先建立连接 AT+BLECONN=0, <addr></addr>		
输入 AT+BLEGATTCDISCSVC=0,1,ffff		
正确响应 1:		
+BLEGATTCDISCSVC:1,8,0000111100000000123456789ABCDEF		
+BLEGATTCDISCSVC:9,14,00000000000000000000000000000000000		
+BLEGATTCDISCSVC: 16,25,00000000000000000000000000000000000		
+BLEGATTCDISCSVC:32,40,0000000000000000000000000000000000		
+BLEGATTCDISCSVC:43,61,00000000000000000000000000000000000		

6.38. AT+BLEGATTCDISCCHAR

表 6-38. 发现 characteristic

指令	参数	响应	
帮助指令		+BLEGATTCDISCCHAR= <conn_< td=""></conn_<>	
AT+BLEGATTCDISCCH		idx>, <start_hdl>,<end_hdl></end_hdl></start_hdl>	
AR=?			
执行指令	<conn_idx> : 连接索引</conn_idx>	执行结果	
AT+BLEGATTCDISCCH	< start_hdl >: start attribute	+BLEGATTCDISCCHAR: <char_h< td=""></char_h<>	
AR= <conn_idx>,<start_hdl< td=""><td>handle</td><td>dl >,<val_hdl>,<prop>,<uuid></uuid></prop></val_hdl></td></start_hdl<></conn_idx>	handle	dl >, <val_hdl>,<prop>,<uuid></uuid></prop></val_hdl>	
>, <end_hdl></end_hdl>	< end_hdl >: end attribute handle		
示例 1:发现 characteristic			
先建立连接 AT+BLECONN=0	, <addr></addr>		
输入 AT+BLEGATTCDISC	CHAR=0,1,ffff		
正确响应 1 :			
+BLEGATTCDISCCHAR:2,3,2,00002222000000000123456789ABCDEF			
+BLEGATTCDISCCHAR:4,5,12,0000333300000000123456789ABCDEF			
+BLEGATTCDISCCHAR:6,7,16,0000444400000000123456789ABCDEF			
+BLEGATTCDISCCHAR:10,1	+BLEGATTCDISCCHAR:10,11,12,000000000000000000000000000000		
+BLEGATTCDISCCHAR:12,13,16,000000000000000000000000000000000			
+BLEGATTCDISCCHAR:17,1	18,32,00000000000000000000000000000000000	00002A05	
+BLEGATICDISCCHAR:20,2	21, 10,000000000000000000000000000000	00002B29	
+BLEGATTCDISCCHAR:22,23,2,0000000000000000000000000000000			
+BLEGATTCDISCCHA R:24,25,2,000 0000 0000 0000 0000 0000 0002 B3A			
+BLEGATT CDISCCHA R:33,34,10,0000000000000000000000000000000			
+BLEGATTCDISCCHAR:35,36,10,000000000000000000000000000000000			
+BLEGATTCDISCCHAR:37,38,2,0000000000000000000000000000000000			
+BLEGATTODISCCHAR: 39,40,2,0000000000000000000000000000002AA6			
-DECONTTODISCONTENE+0,47,2,000000000000000000000000000002824			
UN			

6.39. AT+BLEGATTCDISCDESC

表 6-39. 发现 descriptor

指令	参数	响应
帮助指令		+BLEGATTCDISCDESC= <conn_i< td=""></conn_i<>
AT+BLEGATTCDISCDE SC=?		dx>, <start_hdl>,<end_hdl></end_hdl></start_hdl>
执行指令 AT+BLEGATTCDISCDE SC= <conn_idx>,<start_hdl >,<end_hdl></end_hdl></start_hdl </conn_idx>	<conn_idx> : 连接索引 < start_hdl >: start attribute handle</conn_idx>	执行结果 +BLEGATTCDISCDESC: <desc_h dl >,<uuid></uuid></desc_h

指令	参数	响应
	< end_hdl >: end attribute handle	
示例 1. 发现 descriptor		
先建立连接 AT+BLECONN=0, <addr></addr>		
输入 AT+BLEGATTCDISCDESC=0,1,ffff		
正确响应 1:		
+BLEGATTCDISCDESC:8,000000000000000000000000000000000000		
+BLEGATTCDISCDESC:14,000000000000000000000000000000000000		
+BLEGATTCDISCDESC:19,000000000000000000000000000000000000		
ОК		

6.40. AT+BLEGATTCRD

表 6-40. Read attribute value

指令	参数	响应
帮助指令		+BLEGATTCRD= <conn_idx>,<handl< td=""></handl<></conn_idx>
AT+BLEGATTCRD=?		e>, <max_len></max_len>
执行指令	<conn_idx> : 连接索引</conn_idx>	执行结果
AT+BLEGATTCRD= <conn_< td=""><td>< handle >: attribute handle</td><td>+BLEGATTCRD:<conn_idx>,<lengt< td=""></lengt<></conn_idx></td></conn_<>	< handle >: attribute handle	+BLEGATTCRD: <conn_idx>,<lengt< td=""></lengt<></conn_idx>
idx>, <handle>,<max_len></max_len></handle>	< max_len >: max length	h>, <data></data>
示例 1: Read attribute value)	
先建立连接 AT+BLECONN=0, <addr></addr>		
输入 AT+BLEGATTCRD=0,3,100		
正确响应 1:		
+BLEGATTCRD:0,2,2222		
ОК		

6.41. AT+BLEGATTCWR

表 6-41. Write attribute value

指令	参数	响应
帮助指令		+BLEGATTCWR= <conn_idx>,<hand< td=""></hand<></conn_idx>
AT+BLEGATTCWR=?		le>, <w rite_type="">,<len></len></w>
执行指令	<conn_idx> : 连接索引</conn_idx>	执行结果
AT+BLEGATTCWR= <conn< td=""><td>< handle >: attribute handle</td><td></td></conn<>	< handle >: attribute handle	
_idx>, <handle>,<w rite_type<="" td=""><td>< w rite_type >: 写类型</td><td></td></w></handle>	< w rite_type >: 写类型	
>, <len></len>		

指令	参数	响应
	<len>:</len> 写长度	
示例 1: Write attribute value	9	
先建立连接 AT+BLECONN=0, <addr></addr>		
输入 AT+BLEGATTCWR=0,5,0,5		
>		
输入 AAAAA(对端会收到数据)		
正确响应 1:		
ок		

7.

版本历史

表 **7-1**. 版本历史

版本号.	说明	日期
1.0	首次发布	2023 年 10 月 17 日
	新增了 AT+TRANSINTVL 和	
1.1	AT+CIPMODE 命令,并扩展了原有	2024 年 7 月 16 日
	的 AT+CIPSEND 支持数据透传	
1.2	新增 BLE 相关 AT 命令	2024 年 10 月 8 日
1.3	新增 BLE 相关 AT 命令	2025年3月20日

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company according to the laws of the People's Republic of China and other applicable laws. The Company reserves all rights under such laws and no Intellectual Property Rights are transferred (either wholly or partially) or licensed by the Company (either expressly or impliedly) herein. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

To the maximum extent permitted by applicable law, the Company makes no representations or warranties of any kind, express or implied, with regard to the merchantability and the fitness for a particular purpose of the Product, nor does the Company assume any liability arising out of the application or use of any Product. Any information provided in this document is provided only for reference purposes. It is the sole responsibility of the user of this document to determine whether the Product is suitable and fit for its applications and products planned, and properly design, program, and test the functionality and safety of its applications and products planned using the Product. The Product is designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and the Product is not designed or intended for use in (i) safety critical applications such as weapons systems, nuclear facilities, atomic energy controller, combustion controller, aeronautic or aerospace applications, traffic signal instruments, pollution control or hazardous substance management; (ii) life-support systems, other medical equipment or systems (including life support equipment and surgical implants); (iii) automotive applications or environments, including but not limited to applications for active and passive safety of automobiles (regardless of front market or aftermarket), for example, EPS, braking, ADAS (camera/fusion), EMS, TCU, BMS, BSG, TPMS, Airbag, Suspension, DMS, ICMS, Domain, ESC, DCDC, e-clutch, advanced-lighting, etc.. Automobile herein means a vehicle propelled by a selfcontained motor, engine or the like, such as, without limitation, cars, trucks, motorcycles, electric cars, and other transportation devices; and/or (iv) other uses where the failure of the device or the Product can reasonably be expected to result in personal injury, death, or severe property or environmental damage (collectively "Unintended Uses"). Customers shall take any and all actions to ensure the Product meets the applicable laws and regulations. The Company is not liable for, in whole or in part, and customers shall hereby release the Company as well as its suppliers and/or distributors from, any claim, damage, or other liability arising from or related to all Unintended Uses of the Product. Customers shall indemnify and hold the Company, and its officers, employees, subsidiaries, affiliates as well as its suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Product.

Information in this document is provided solely in connection with the Product. The Company reserves the right to make changes, corrections, modifications or improvements to this document and the Product described herein at any time without notice. The Company shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 GigaDevice Semiconductor Inc. - All rights reserved