GigaDevice Semiconductor Inc.

GD32VW553 BLE Development Guide

Application Note
AN152

Revision 1.3

(Mar.2025)

°

AN152
GD32VW553 BLE Development Guide

GigaDevice
Table of Contents

Table Of CONLENES.......ooi s s amn s 2
IS o o 11 = 7
=3 o 0 = = 8
1. L0 AV VAT=RTIV o7 B = I S 0] G 9
1.1. BLE software framework...........cceuuiiiiiiiieeciiirerre s e e s s s e s e s s s s e n s s e e ennnn 9
1.2. Overview of BLEMESKh........cooo oo e rsns s s s s e s e s e s e e s e r e nnnnn 1
2. o I e 12
P2 R = I8 =V - T] (= 2 = 12
211, Adapter MESSAgE fY P . .. e i e 12
2.1.2. ble_adp_callbaCk _regiSter.iuuiiiiii e 14
2.1.3. ble_adp_callback_UNregister..........co.iiiiiiiiii e 14
214, Dle AP MESEL. ... i 14
2.1.5. ble_adp chann_mMap SEl.........oouiiiiii 14
2.1.6. ble_adp l0C QMK SOl .. e 15
2.1.7. ble_adp 10C_irK_GeL .. e 15
2.1.8. ble_adp_identity_addr gel...... ..o 15
2.1.9. Dble_adp_public_addr gl ..o 16
2.1.10. ble_adp_identity_addr_Set..........ooiiiiii 16

2. 111, Dle_adp NAME Sl . e 16
2.1.12. ble_adp _loCal_VMer_get..o 16
2.1.13. ble_adp_sugg dft_data_len get...........cooiiiiiii e 17
2.1.14. ble_adp DX _PWI range et ... cou i 17
2.1.15. ble_adp_max_data_len_getl....... ..o 17
2.1.16. ble_adp_adv Sets _NUM _GeL.... ..o 17
2.1.17. ble_adp_addr_reSOIVE ... e 18
2.1.18. ble_adp_static_random_addr_gen...........ccoiiiiiiiiii 18
2.1.19. ble_adp_resolvable_private_addr_genccouiiiiiiiiii e 18
2.1.20. ble_adp_none_resolvable_private_addr_gen...........ccoooiiiiiiiiiiii 19
2.1.21. ble_Adp 1EST X e 19
2.1.22. DlE _adD 1ESt Xeiiii e 20
2.1.23. ble_adp teSt @Na... ... 20
2.2. BLE advertising APlo 20
221, AdVertiSiNg MeSSage tYPe. . eu et 20
2.2.2. DlE @AV Create... e i 21
2.2.3. ble_adVv Start........oo e 22
2.2.4. ble_adVv restart.o 22
A TN o) [T = To AV =3 o] o TR 23

c AN152
GigaDevice GD32VW&553 BLE Development Guide
b T o) [T = To AV =2 o P 23
2.2.7. ble_adv data update ... 23
2.3. BLE advertising data APl ... s s 24
2.3.1. ble adV fiNd. ... 24
2.3.2. ble_adv_cmpl_name_fiNd...... ..o e 24
2.3.3. ble_adv short name find ..., 25
2.3.4. ble_adv_srv Uuid_fiNd . ..o 25
2.3.5. ble_adv_appearance fiNdoiiiiiiiiiiiii 26
2.4, BLE SCAN APl e e 26
A H T 17 o o [T To L= Y] L= TP 26
2.4.2. Dble_scan_callbaCk_regiSter...... ... 27
2.4.3. ble_scan_callback _UNregiSter.........c.viuiiuiiii i e 27
244, ble_SCan_enable.... ... 27
2.4.5. ble_scan diSAble............coiiniiiii 28
2.4.6. Dle_SCaAN_Param_SEl ... coeiiiiii i e 28
2.4.7. DlE_SCAN_PAram Qe ... it 28
2.5. BLE connection APlo s e s 29
2.5.1. COoNNECHON MESSA0E 1Y P .. eunieeii e et et e e e e e e e e e e e e ae e e eanes 29
2.5.2. ble_conn_callback _FegiSter...........iuiiii e 34
2.5.3. ble_conn_callback _UNregISter.........c.uiiuiiiiiii e e e e e 34
RN S o) =Y oo o [W oo] o o 1= o PP PTPPTN 34
2.5.5. ble conn_diSCONNECE........c.oiiii i e e 35
2.5.6. ble_conn_connect_CanCel..........c.iiuiiiiiii e 35
2.5.7. ble_conn_SEC QiNfO SEL......ciiiiiiii i 36
2.5.8. ble_CONN_pPeer_NamMeE gtcouiiiiii i 36
2.5.9. ble_conn_peer_feats elo 37
2.5.10. ble_conn_peer_appearanCe_geloiiuiiiiiii e e 37
2.5.11. Dble_conn_peer _Version_Gel........ooiii i e 38
2.5.12. ble_conn_peer_slave_prefer_param_get..........coooiiiiiiiiiiiiii e 38
2.5.13. ble_conn_peer_addr_resolution_support_get...........cooiuiiiiiiiiii e 38
2.5.14. ble_conn_peer_rPa_OnlY _GeL........coiuiiiuiiiiii et 39
2.5.15. ble_conn_peer_db hash_get............ooiiiiiiii 39
2.5.16. Dl _CONN_PRY _QEL. .. e e 40
b Tt A o (Y oo o o T) 017/ = S P 40
2.5.18. ble_CONN_PKE_SIZE SEL.....ieeii 41
2.5.19. ble_conn_Chann_Map_GEL.........iviiiiiiiie e e 41
2.5.20. ble_conn_ping_tO Get. e 41
2.5.21. ble_Conn_pPiNG 10 SEl.....cuiiiiiiiii e 42
RN o) (=Y oo o o I =T [PP 42
2.5.23. ble_ConNN_param_UPAatE OOuiuuieeeeieie ettt et et e e e et e e e aaeans 43
2.5.24. ble_conn_per_adv _SYNC trans..........ocoiiiiiiiiii e 43
2.5.25. ble_conn_name_get ClMo 44

c AN152
GigaDevice GD32VW&553 BLE Development Guide
2.5.26. ble_conn_appearance_get_ Cm.... ..o 44
2.5.27. ble_conn_slave_prefer param_get Cim ..o 45
2.5.28. ble_conn_name Set CIM 46
2.5.29. ble_conn_appearanCe St CIM.........ociuiiiiiiiii e 46
2.5.30. ble_conn_param_update CImM....... ..o 47
2.5.31. ble_conn_local_tX_PWI_GEL.... ... e 47
2.5.32. ble_CoNN_peer tX_ PWI Qe ... 48
2.5.33. ble_conn_tX_pwr_report_Ctrl.... ... 48
2.5.34. ble_conn_path _10SS _Clrl......oeiei e 49
2.5.35. ble_conn_enable_central_feat........... ..o 50
2.6. BLE SeCUNity APl ... s e 50
2.6.1. SECUNLY MESSAGE TYPE. .. ettt e e e e e e e 50
2.6.2. ble_sec _Callback_regiSter.........iviiiiiiie e 52
2.6.3. ble_sec_callback_UNregister...........o.oiiiii i 52
2.6.4. DIE _SEC SECUIMY MBQ. . uuitiiiieiiii ittt e e e e e e et e e e et e e e et e et aeaneaanes 53
2.6.5. DI _SEC DONA_MEQ. ... e e 53
2.6.6. DIE_SEC BNCIYPL M0 . euiiiiiiiei et 53
2.6.7. ble_SeC_Key _Press NOUTYoceeiiiiie e 54
2.6.8. ble_sec key display_enter CmM..... ..ot 54
2.6.9. ble_SEC 00D reQ CIML...ouiii e 55
2.6.10. DlE _SEC_NC_CfM. et e e e e 55
2.6.11. ble_seC K req CM... ... 55
2.6.12. ble_SeC K _req CmM. .. . 56
2.6.13. ble_SEC CSIK reQ CIM, 56
2.6.14. ble_seC_encrypt_req ClM.. ... 57
2.6.15. ble_sec_paifing_req_CimMo e 57
2.6.16. ble_sec_00b_data req CM.......ooeiiiiii e 58
2.6.17. Dble_SeC_ 00D _dat@ geN......ccuiieii e 58
7 (R = 1 13 - = 58
A (e T N 1 4 =TT o o 1 o P 59
2.7.2. ble_list_callback_registero 59
2.7.3. ble_list_callback _UNregiSter..........covuiiiiiiii e 59
A A T o [~ 7= 1 o o TSP 60
2.7.5. ble fal liSt Sel. oo 60
2.7.6. DIE fAl ClEAN.... ... e 60
2.7.7. ble fal_SIZ& QL. .. oo 61
2.7.8. DIE Al 0P, e it 61
2.7.9. ble ral LISt Sl ..o e 61
2.7.10. DIE TAl_CIBANo 62
2711, ble _ral_SIZ@ et ... o e 62
2.7.12. DIE_I0OC 1P QL .. e 62
A 0 I T o) (Y o = 4 o = o = PP 63
O U o) (=R o - | I o] PP PRPPRN 63

c AN152
GigaDevice GD32VW&553 BLE Development Guide
2.7.15. ble_pal_liSt St ... e e 63
2.7.16. DlE Pal ClEAI.... ...t e e e 64
2.7.17. ble_pal_SiZe Gel....coeieiie e 64
2.8. BLE periodiCc SYNC APl ... s s 64
2.8.1. PeriodiC SYNC MESSAGELYPE ... cuuieiiiii it e ettt e e 65
2.8.2. Dble_per_sync_callback _regiSter..........ouuiiiii e 65
2.8.3. ble_per_sync_callback_Unregister.o 66
2.8.4. Dle_Per_SYNC _Star. ... 66
2.8.5. Dle_PEr_SYNC_CANCEL......ce i e e 66
2.8.6. ble_per_sSynC_teminale..... ... 67
2.8.7. ble_per_synC_report_Clrl... ..o 67
P2 TR = 1 I =3] =T = o O 67
2.9.1. ble_peer_data bond_StOre...........oouiiuiiiii e 68
2.9.2. ble_peer data bond 10ad...........cooiiiiiiii 68
2.9.3. ble_peer data delete. ..o 69
2.9.4. ble_peer_all_addr etouiiii s 69
2.9.5. ble_ SVC data SAVe.......couiiiii i 69
2.9.6. ble sve data load ..o 70
2.10. BLE gatts APlccoeeeiiiiiiiieiis i e e n e nn s 70
2.10.1. QattS MESSAGE Y P e i 70
2.10.2. ble_gatts SVC_addc.iiiiiiiiiii i 72
2.10.3. Dle_Qatls SVC MMV .. 73
2.10.4. ble_gatts_ntf iNd_SEeNd..... ..o e 73
2.10.5. ble_gatts_ntf ind_send by _handle...............ooiiiiiiiiii 74
2.10.6. ble_gatts_ntf ind_mtp_Send....... ..o 74
2.10.7. ble_gatts MU Get.. ... o 75
2.10.8. ble_gatts_svc_attr write CmM... ..o 75
2.10.9. ble_gatts_svc_attr read_Cfmcoooiiii e 75
2.10.10. ble_gatts_get start_hdl............ooooiiii e 76
2.10.11. ble_gatts_set_attr Val..........ooooiii e 76
2.10.12. ble_gatts ISt SVC...iiuii i e 77
2.10.13. ble_gatts ISt Char.... ..o e 77
2.10.14. ble_gatts ISt dESC.....en e 77
200 e T = 1 I8 o - 1 (o Y o 78
0t b Tt T o = o 4 1= XST= T [1Y/ oY 78
2.11.2. ble_gattc_start_diSCOVEIY ... e 79
b2 T T o (=Y o - L1 (oY o (=T PPN 79
b I S o) (=R o = L (o= Y o U] (=T PP 80
2.11.5. Dle_QatlC_MEAM.o 80

b L T o (=Y o = L (oY L= Yo P 80
2.11.7. ble_gattc_WItE CMA.... ... e e e ens 81
2.11.8. ble_gattc_Write_SIgNedo 81

e AN152

GD32VW553 BLE Development Guide

GigaDevice

2.11.9. ble_gattc_ MU Updatecouiiii e 82
2.11.10. ble_gattc_ MU Gel.. ..o e 82
2.11.11. ble_gattc_find_char_handle........... ..o 82
2.11.12. ble_gattc_find_desC_handlecoiuiiiiiiii e 83
200 7 = 1 I = (oY X - o 83
2,120, Dle SW NIt e 83
2.12.2. DIE _SW_dEINIT ..t e 83
2.12.3. ble_stack task rESUME.t e e ens 84
2.12.4. Dble_local_app_MSG SENU.t e e 84
2.12.5. ble_app_mMSG NAL FEQ ... e 84
2.12.6. ble_Sleep MOde SEL..... ..o e 85
2.12.7. Dble_sleep mMode gl e 85
2.12.8. ble_COre iS dEEP SIEEP .. .ueeiiiii e 85

b 178 ¢ N o (=Y 4 oo 1= o o T e o o P 85
2.12.10. ble_ WOIK_Status _GEL.........couiiiiiii i e e e 86
2.12.11. ble_internal_eNCOE..... ... e 86
2.12.12. ble_internal_deCOE...........ouniiii e 86
3. Application eXamples........ccoiiiiicricsecreerrrrrr e s annnnnnn 87
B g - o T o N 87
B 0 Vo |V =Y o (T3 1 88
3.3. GATT server applicationcccceeiiiiiimemmiiiiirrrmses s rrrsns s rersnns s s s s e s nnnssssssesennnns 93
3.3 1. AdAING @ SBIVICEoeiiieiii e 93
3.3.2. Serviceattribute database ... 93
3.3.3. Service attribute readandwrite.....................oooii 95
3.4. BLE distribution netwWork............ccoiiiiimmiiiir s 97
3.41. Process of BlUE COUNIEN 97
3.4.2. GATT deSCHIPLION ... oo e e e e e e e 98
3.4.3. Advertising data.............coooiiii i 99
3.4.4. Frame fommat. 99
4, ReViSion hiStOry ... 103

c AN152

GigaDevice GD32VW553 BLE Development Guide

List of Figures

Figure 1-1. BLE software framewWorKi i 9
Figure 1-2. BLE Mesh Framework Diagram...........c..oiuiiiieiieiii e e e e e e e e e e e eanes 1
Figure 3-1. ProCess Of BIUE COUNET iuiieii ettt e e e e e eennns 98

c AN152

GigaDevice GD32VW553 BLE Development Guide
List of Tables

Table 3-1. Example code of scan event handler..............cooiiiiii i 87
Table 3-2. Example code of configure scan parameterso.vvuiiiiiiiiiii e 88
Table 3-3. Example code of enable SCaN...............oooiiiiii i 88
Table 3-4. Example code of advertising event handlerccooiiiiiiiiii i 89
Table 3-5. Example code of create advertiSing........ ..o 90
Table 3-6. Example code of enable advertisingo 92
Table 3-7. Example code of add @ SEIVICE........cuiiiiiii e 93
Table 3-8. Example code of senice database.o.uiivniiiiiiiii i 93
Table 3-9. Example code of attribute read and write function................coooiiii i, 95
Table 3-10. Example code of send notification ..., 97
Table 3-11. Distribution network serice UUIDoouniiiiiiii e 98
Table 3-12. Service UUID in advertising data.coooeiiiiii e 99
Table 3-13. Frame format of blu€ COUMEToieiiie e 99
Table 3-14. Frame control field....... ... e 99
Table 3-15. Content of management frame ..o 100
Table 3-16. Content of data frame....... ..o e 101
Table 4-1. ReVISION NISLOMY ... e et ea e 103

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

1.

1.1.

Overview of BLE SDK

The GD32VW553 series chip is a 32-bit microcontroller (MCU)with RISC-V as the core, which
contains Wi-Fi4/Wi-Fi6 and BLE5.3 connection technologies. GD32VW553 Wi-Fi+BLE SDK
integrates the Wi-Fi driver, BLE driver, LwIP TCP/IP protocol stack, MbedTLS, and other
components, allowing developers to quickly develop loT applications based on GD32VW553.
This document describes the BLE software framework and related APl interfaces aiming to
help dewelopers become familiar with BLE APIs and use them to dewelop their own
applications. For related Wi-Fi information, please refer to the "AN158 GD32VW553 Wi-Fi
Development Guide".

BLE software framework

Figure 1-1. BLE software framework

BLE SERVICES

BLE
COMPONENTS

As shown in Figure 1-1. BLE software framework, the GD32VW553 BLE software part
consists of four modules: BLE STACK, BLE COMPONENTS, BLE senices, and BLEAPP.

BLE STACK s theimplementation ofthe BLE protocol stack, whichincludes GAP, GATT, SMP,
L2CAP, HCI, LL, and other modules. BLE STACK runs in a separate task and interacts with
BLE COMPONENTS through TASK messages. APP needs to operate STACK through BLE
COMPONENTS.

BLE COMPONENTS consists of multiple components, and runs in the same task as BLE
senice and BLE APP to provide APP withinterfaces for STACK control and status notification,
etc. Note that most operations of BLE are executed asynchronously. APP needs to register a
callback handler in each module, and BLE COMPONENTS will notify APP of the API call
execution result or report the operation request initiated by the peer device in the callback
function. Each componentis independent of each other. APP can select different components
to initialize them and register the corresponding callback functions as required.

The BLE ADAPTER module mainly provides interfaces for configuring and obtaining local
BLE related attributes. BLE adapter APlintroduces how to use APl ofthe ADAPTER module.
9

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

The BLE ADV module mainly provides interfaces for creating/deleting advertising sets,
starting/stopping sending advertising packets, etc. BLE advertising APl introduces how to

use API of the ADV module, and BLE advertising data API provides some interfaces for
searching for specific AD type datain advertising data.

The BLE SCAN module mainly provides interfaces for searching for advertising sets and
reports the search results to the APP. BLE scan APl introduces how to use API of the SCAN
module.

The BLE CONNECTION module mainly provides interfaces for creating connections,
obtaining peer device information, and obtaining or setting connection parameters, etc. BLE
connection APl introduces how to use API of the CONNECTION module.

The BLE SECURITY module mainly provides interfaces required for interaction during pairing,
authentication, encryption, and other processes. BLE security API introduces how to use
API of the SECURITY module.

The BLE LIST module mainly provides interfaces for operating FAL, RAL, and PAL, including
operations such as adding devices to the list, deleting devices from the list, and clearing the
list. BLE list APl introduces how to use API of the LIST module.

The BLE PERIODIC SYNC module mainly provides interfaces for synchronizing periodic
adwertising, reporting received periodic adwertising data, etc. BLE periodic sync APl
introduces how to use API of the PERIODIC SYNC module.

The BLE STORAGE module uses flash to store and manage the bond information of the peer
device. The bond information includes peer_irk, peer_ltk, peer_csrk, local_irk, local_ltk,
local_csrk, etc. BLE storage APIintroduces how to use API of the STORAGE module.

The BLE GATT server module mainly provides interfaces for registering/deleting GATT
senice, sending notification/indication to GATT client, etc. BLE gatts APl introduces how to
use APl of the GATT server module.

The BLE GATT client module mainly provides the following functions: initiate GATT discovery,
read and write attribute in the peer GATT sener. BLE gattc API introduces APl usage of
GATT client module.

BLE senvices are different senices and profiles realized based on GATT server and GATT
client modules, including BAS and DIS, etc. Users can also realize private senices by using
GATT server and GATT client interfaces required.

The BLE APP layeris a collection of multiple applications, such as blue courier (Bluetooth
distribution network) and user-defined applications. APP can register callback functions with
different modules to process corresponding messages according to different requirements.

10

e

GigaDevice

AN152
GD32VW553 BLE Development Guide

1.2.

Overview of BLE Mesh

Based on the Zephyr open-source Bluetooth Mesh protocol stack, we have implemented a
comprehensive Bluetooth Mesh 1.1 network solution. This solution supports device
networking, multi-node communication, dynamic data interaction, and remote control
functionalities, making it suitable for scenarios such as smart homes, industrial loT, and asset
tracking. It offers high reliability, low latency, and low power consumption, with the capability
to support large-scale node deployment.

Figure 1-2. BLE Mesh Framework Diagram

Applications
APl & Event
Mesh networking stack Fetures Mesh Provisioning stack
Friend
_—
Provisioning PDUs
Foundation Model Layer

Access Layer

Remote Generic
Provisioning Provisioning
Message PDU

Upper Transport Layer

Low Transport Layer

Network Layer

Bearer Layer

GATT bearer

Advertising Bearer

Bluetooth Core Specification(LE Physical Transport)

As shown in Figure 1-2. BLE Mesh Framework Diagram, the GD32VW553 BLE Mesh is an
application-level protocol implemented based on the BLE protocol stack. It consists of
modules such as the Mesh networking stack, Mesh provisioning stack, and Applications.

The Mesh networking stack enables layers including the Bearer Layer, Network Layer,
Transport Layer, Access Layer, Foundation Model Layer, and Model Layer. The Networking
Layer supports functionalities like Key Refresh, IV Update, IV Index Recovery, Node Removal,
and Node Provisioning Protocol Interface. The provisioning stack supports network setup

1

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.1.

21.1.

through advertising (PB-ADV), connections (PB-GATT), or existing mesh networks (PB-
Remote). It also features Friend Nodes, Low Power Nodes, Relay Nodes, and Proxy Nodes.

The Foundation Models include Configuration Models, Health Models, Remote Provisioning
Models, Bridge Models, Mesh Private Beacon Models, On-Demand Private Proxy Models,
SAU Configuration Models, Solicitation PDU RPL Models, Opcodes Aggregator Models, and
Large Composition Data Models.

Additionally, models support Device Firmware Update (DFU), enabling wireless firmware
upgrades for devices over a Mesh network. This functionality eliminates the need for physical
contact and allows secure upgrades for tens or hundreds of nodes simultaneously.

For related Zephyr Mesh modules, refer to the BLE Mesh Profile, and for programmatic
references, check the Mesh API.

BLE API

BLE adapter API

The header file is ble_adapter.h.

The BLE adapter module mainly provides interfaces for configuring and obtaining local BLE
related settings.

Adapter message type
APP canregistera callback function inthe BLE adapter module, and the BLE adapter module
will send the following event message to APP through the callback function.

m BLE_ADP_EVT ENABLE_CMPL_INFO

This message will be sent after the BLE adapter is initialized. The message data type is
ble_adp_info_t, including whether the initialization is successful; if yes, local attributes such
as local version and local IRK will also be reported.

APP can only perform BLE related operations after it receives this message and the status
indicates that the initialization is successful.

m BLE_ADP_EVT RESET CMPL_INFO

This message will be sent after the BLE adapter is reset. The message data type is uint16 t,
indicating whether the reset is successful.

m BLE_ADP_EVT DISABLE_CMPL_INFO

This message returns the result of APP calling ble_adp_disable API to disable the BLE

module. The message data type is uint16_t, indicating whether the disable is successful.
12

https://docs.zephyrproject.org/latest/connectivity/bluetooth/api/mesh.html
https://docs.zephyrproject.org/latest/doxygen/html/group__bt__mesh.html

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

m BLE_ADP_EVT CHANN_MAP _SET RSP

This message returns the result of APP calling ble_adp_chann_map_set API to set the
channel map. The message data type is uint16_t, indicating whether the channel map is set
successfully.

m BLE_ADP_EVT LOC_IRK_SET RSP

This message returns the result of APP calling ble_adp_loc_irk_set APIto set the local IRK.
The message data type is uint16_t, indicating whether the local IRK is set successfully.

m BLE_ADP_EVT LOC_ADDR_INFO

This message is used to notify APP of new address information after the local address
changes, for example, after RPA timeout. The message data type is
ble gap local_addr_info_t.

m BLE_ADP_EVT NAME_SET RSP

This message returns the result of APP calling ble_adp _name_set API to set the local name.
The message data type is uint16_t, and the status indicates whether the local name is set
successfully.

m BLE_ADP_EVT ADDR RESLV_RSP

This message returns the result of APP calling ble_adp_addr_resolve API to reslove the
passed in RPA. The message data type is ble_gap_addr_resolve rsp _t, including whether
the RPA is resolved successful; if yes, it also contains the address after the resloving and the
corresponding IRK information.

m BLE_ADP_EVT RAND ADDR _GEN_RSP

This message returns the result of APP calling ble_adp_none_resolvable_private_addr_gen
API, ble_adp_static random_addr_gen AP, or ble_adp_resolvable_private_addr_gen API to
generate a random address. The message data type is ble_gap_rand_addr_gen_rsp_t. lfthe
random address is successfully generated, the corresponding address information is also
provided.

m BLE_ADP_EVT TEST TX RSP

This message returns the result of APP calling ble_adp_test_tx APIl. The message data type
is uint16_t, indicating whether the tx test starts to be executed successfully.

m BLE_ADP_EVT TEST RX RSP

This message returns the result of APP calling ble_adp_test_rx API. The message data type
is uint16_t, indicating whether the rx test starts to be executed successfully.

m BLE_ADP_EVT TEST END RSP

This message returns the result of APP calling ble_adp_test_end API. The message data type
is ble_gap_test_end_rsp_t, including whether the test is ended successfully.

13

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.1.2.

2.1.3.

2.1.4.

2.1.5.

B BLE ADP_EVT TEST RX PKT_INFO
This message is used to notify APP about the successfully received packet number after test

rx mode is ended. The message data type is ble_gap_test_rx_pkt_info_t.

ble_adp_callback_register

Prototype: ble_status_t ble_adp_callback register(ble_adp_ewt_handler_t callback)
Function: Register the callback function that processes BLE adapter messages. For

the description of adapter messages, see_Adapter message type.

Input parameter: callback, callback function pointer
Output parameter: None

Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure

ble_adp_callback_unregister

Prototype: ble_status_t ble_adp_callback_unregister(ble_adp_ewt_handler_t callback)
Function: Unregister the callback function from BLE adapter module

Input parameter: callback, callback function to be unregistered

Output parameter: None

Return value: Return 0 on success, and return the error code definedin ble_status_ton failure

ble_adp_reset

Prototype: ble_status_t ble_adp_reset(woid)

Function: Reset BLE protocol stack and each module

Input parameter: None

Output parameter: None

Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure
After the resetting, a BLE_ADP_EVT RESET CMPL_INFO message is sent

to the callback function

ble_adp_chann_map_set

Prototype: ble_status_t ble_adp_chann_map_set(uint8 t*p_chann_map)

Function: Set the channel map available for BLE

14

°

AN152
GD32VW553 BLE Development Guide

GigaDevice
Input parameter: p_chann_map, channel map array, whose length is 5
bytes and effective bits are the lower 37 bits. Bit 0 of byte O is set to use
channel index 0, bit 1 of byte 0 is set to use channel index 1, and so on
Output parameter: None
Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure
After the setting, a BLE_ADP_EVT_CHANN_MAP_SET_RSP message is
sent to the callback function
2.1.6. ble_adp_loc_irk_set
Prototype: ble_status_t ble_adp_loc_irk_set(uint8_t *p_irk)
Function: Set local IRK
Input parameter: p_irk, the IRK pointer to be set, whose length is 16 bytes
Output parameter: None
Return value: Return 0 on success, and return the error code definedin ble_status_ton failure
After the setting, aBLE_ADP_EVT LOC IRK_SET RSP message is sent
to the callback function
21.7. ble_adp_loc_irk_get
Prototype: ble_status_t ble_adp_loc_irk_get (uint8_t*p_irk)
Function: Get local IRK used by BLE adapter
Input parameter: None
Output parameter: p_irk, local IRK pointer, whose length is 16 bytes, is used to save
the obtained local IRK information
Return value: Return 0 on success, and return the error code definedin ble_status_ton failure
2.1.8. ble_adp_identity_addr_get

Prototype: ble_status_t ble_adp_identity_addr_get (ble_gap_addr_t *p_id_addr)
Function: Get identity address used by BLE adapter
Input parameter: None

Output parameter: p_id_addr, identity address pointer, including address type and

15

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.1.9.

2.1.10.

2.1.11.

21.12.

address value

Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure

ble_adp_public_addr_get

Prototype: ble_status_t ble_adp_public_addr_get(uint8_t *p_addr)
Function: Get public address used by BLE adapter

Input parameter: None

Output parameter: p_addr, public address pointer

Returnvalue: Return 0 on success, and return the error code definedin ble_status_t onfailure

ble_adp_identity_addr_set

Prototype: ble_status_t ble_adp_public_addr_set(uint8_t *p_addr)

Function: Set public address used by BLE adapter, the address will be used after nex reboot
Input parameter: None

Output parameter: p_addr, public address pointer

Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure

ble_adp_name_set

Prototype: ble_status_t ble_adp_name_set (uint8_t *p_name, uint8_t name_len)
Function: Set device name used by BLE adapter
Input parameter: p_name, device name pointer
name_len, device name length
Output parameter: None
Returnvalue: Return 0 on success, and returnthe error code defined in ble_status_tonfailure
After the setting, aBLE_ADP_EVT_NAME_SET_RSP message is sentto

the callback function

ble_adp_local_ver_get

Prototype: ble_status_t ble_adp_local_ver_get (ble_gap_local_ver_t *p_val)
Function: Get BLE adapter version information

Input parameter: None
16

°

AN152
GD32VW553 BLE Development Guide

GigaDevice
Output parameter: p_val, local version structure pointer, including hci version,
Imp version, etc.

Return value: Return 0 on success, and return the error code definedin ble_status_ton failure
21.13. ble_adp_sugg_dft_data_len_get

Prototype: ble_status_t ble_adp_sugg_dft_data len _get(ble gap sugg dft data t*p_data)

Function: Get default transmit data parameters of BLE adapter

Input parameter: None

Output parameter: p_data, suggest data structure pointer, including max tx time and

max tx octets

Returnvalue: Return 0 on success, and return the error code definedin ble_status_ton failure
21.14. ble_adp_tx_pwr_range_get

Prototype: ble_status_t ble_adp_tx_pwr_range_get(ble_gap_tx_pwr_range_t *p_val)

Function: Get the BLE adapter transmit power range

Input parameter: None

Output parameter: p_val, tx power range structure pointer, including min tx power and

max tx power

Return value: Return 0 on success, and return the error code definedin ble_status_ton failure
21.15. ble_adp_max_data_len_get

Prototype: ble_status_t ble_adp_max_data_len_get(ble gap_max_data_len_t*p_len)

Function: Get BLE adapter max data length information

Input parameter: None

Output parameter: p_len, max data length structure pointer, including max tx octets, max

tx time, max rx octets, and max rx time

Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure

2.1.16. ble_adp_adv_sets_num_get

Prototype: ble_status_t ble_adp_adv_sets num_get (uint8_t *p_val)

Function: Get the maximum number of advertising sets supported by BLE adapter
17

e AN152
GD32VW553 BLE Development Guide

GigaDevice

Input parameter: None
Output parameter: p_val, advertising set number pointer

Return value: Return 0 on success, and return the error code definedin ble_status_ton failure

21.17. ble_adp_addr_resolve

Prototype: ble_status_tble _adp_addr_resolve(uint8_t *p_addr, uint8_t*p_irk, uint8_tirk_num)
Function: Use the keys in the provided IRK list in turn to resolve the input RPA
Input parameter: p_addr, resolvable private address to be resolved
p_irk, IRK list pointer
irk_num, the number of keys in the IRK list
Output parameter: None
Return value: Return 0 on successful execution, and return the error code defined
in ble_status_t on failure After execution, a
BLE_ADP_EVT ADDR_RESLV_RSP message is sentto
the callback function. If the provided address can be resolved,

the message data includes the resolved identity address and the used IRK.

2.1.18. ble_adp_static_random_addr_gen

Prototype: ble_status_t ble_adp_static random_addr_gen(void)

Function: Generate static random address

Input parameter: None

Output parameter: None

Return value: Return 0 on successful execution, and return the error code defined
in ble_status_t on failure After execution, a
BLE_ADP_EVT RAND_ADDR_GEN_RSP message is sent to the

callback function

2.1.19. ble_adp_resolvable_private_addr_gen

Prototype: ble_status_t ble_adp_resolvable_private_addr_gen(void)

Function: Generate static resolvable private address

18

e AN152
GD32VW553 BLE Development Guide

GigaDevice

Input parameter: None

Output parameter: None

Return value: Return 0 on successful execution, and return the error code defined
in ble_status_t on failure After execution, a
BLE_ADP_EVT _RAND_ADDR_GEN_RSP message is sent to the

callback function

2.1.20. ble_adp_none_resolvable_private_addr_gen

Prototype: ble_status_t ble_adp_none_resolvable_private_addr_gen(woid)

Function: Generate static non-resolvable private address

Input parameter: None

Output parameter: None

Return value: Return 0 on successful execution, and return the error code defined
in ble_status_t on failure. After execution, a
BLE_ADP_EVT_RAND_ADDR_GEN_RSP message is sent to the

callback function

2.1.21. ble_adp_test_tx

Prototype: ble_status_t ble_adp_test tx(uint8 tchann, uint8_ttx data len,
uint8_ttx_pkt payload, uint8_tphy,int8 ttx_pwr M)
Function: Configure BLE controller to enter the test mode and send test packet
Input parameter: chann, tx rf channel index, whose range is 0x00-0x27
tx_data_len, length of tx packet, whose range is 0x00-OxFF
tx_pkt_payload, type of tx packet, whose range is 0x00-0x07
phy, PHY used by tx, 1: 1M, 2: 2M, 3: coded S=8, 4: coded S=2
tx_pwr_IM: tx power
Output parameter: None
Return value: Return 0 on successful execution, and return the error code defined
in ble_status_t on failure After execution,a BLE_ADP_EVT TEST TX RSP

message is sent to the callback function
19

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.1.22.

2.1.23.

2.2

2.21.

ble_adp_test_rx

Prototype: ble_status_t ble_adp_test_rx(uint8_t chann, uint8_t phy, uint8_t modulation_idx)
Function: Configure BLE controller to enter the test mode and receive test packet
Input parameter: chann, rf channel index used by rx, whose range is 0x00-0x27

phy, PHY used by rx, 1: 1M, 2: 2M, 3: coded

modulation_idx: Whether BLE controller has stable modulation index
Output parameter: None
Return value: Return 0 on successful execution, and return the error code defined

in ble_status_t on failure After execution,a BLE_ADP_EVT TEST RX RSP

message is sent to the callback function

ble_adp_test_end

Prototype: ble_status_t ble_adp_test_end(woid)

Function: Configure BLE controller to exit the test mode

Input parameter: None

Output parameter: None

Return value: Return 0 on successful execution, and return the error code defined
in ble_status_t on failure After execution, a BLE_ADP_EVT TEST END RSP
message is sent to the callback function. If test rx mode is ended, a

BLE_ADP_EVT TEST_RX PKT_INFO message is also sent.

BLE advertising API

The header file is ble_adv.h.
The BLE advertising module mainly provides interfaces for creating/deleting advertising sets,

starting/stopping sending advertising packets, etc.

Advertising message type

m BLE_ADV_EVT OP_RSP

This message is a response to APP calling advertising APIs. The message data type is
ble_adv_op_rsp_t, which includes the type of operation code and the status indicating

20

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.2.2,

whether the execution was successful.
B BLE _ADV_EVT STATE_CHG

This message is used to notify APP after the state of advertising sets changes. The state of
adwertising sets is defined as ble_adv_state _t, including the new state, the reason for state
change, and the changed advindex.

m BLE_ADV_EVT DATA_UPDATE_INFO

This message is usd to notify APP about the result of updating the data of the advertising set
being used after calling ble _adv data update APl. The message data type is
ble_adv _data_update_info_t, including the updated advertising data type and the update
success or failure state.

m BLE_ADV_EVT SCAN_REQ RCV

If scan request notification is enabled upon the creation of advertising set, and a scan request
packet is received after advertising is enabled, APP will receive this message. The message
data type is ble_adv_scan_req_rcv_t, including the set address for sending the scan request.

ble_adv_create

Prototype: ble_status_t ble_adv_create(ble_adv_param_t *p_param,
ble_adv_evt_handler_t hdir, void *p_context)
Function: Create BLE advertising set
Input parameter: p_param, advertising parameter structure pointer, which can be used
to configure adv type, interval, phy, and other parameters
hdlr, a handler that registers messages related to the adv.

For the description of adv messages, see Advertising message type.

p_context, a parameter that can be additionally returned to
the message handler
Output parameter: None
Return value: Return 0 on success, and return the error code definedin ble_status_t onfailure

After calling this API, a BLE_ADV_EVT_OP_RSP message will be sent to the
registered message handler to notify if the operation is started successfully. f
so, after the adwertising set is successfully created, a
BLE_ADV_EVT _STATE_CHG message is also sent, and the state is
BLE_ADV_STATE_CREATE. In addition, adv index can be obtained from the
message and used in subsequent APIs.

21

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.2.3.

2.2.4.

ble_adv_start

Prototype: ble_status_t ble_adv_start(uint8_tadv _idx, ble_adv_data_set t *p_adv_data,
ble_adv data_set t *p_scan rsp_data, ble_adv data_set t*p per_adv data)
Function: Set advertising set data and start sending advertising packet
Input parameter: adv_idx, advertising index
p_adv_data, advertising data structure pointer, data can be generated by
the ble advmodule through configuration or directly set by the
caller
p_scan_rsp_data, scan response which needs to be set when the created
advertising set is scannable advertising
p_per_adv_data, periodic advertising data structure pointer, which needs to
be set when the created advertising set is periodic advertising
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_ton failure.

After calling this API, a BLE_ADV_EVT_OP_RSP message will be sent to the
registered message handler to notify if the operation is started successfully. f
so, a BLE_ADV_EVT _STATE_CHG message is also sent. According to the
adwertising data need to set, there may be messages whose state is
BLE_ADV_STATE_ADV_DATA_SET,
BLE_ADV_STATE_SCAN_RSP_DATA_SET,or
BLE_ADV_STATE_PER_ADV_DATA_SET. Finally, there is a message whose
state is BLE_ADV_STATE_START

ble_adv_restart

Prototype: ble_status_t ble_adv_restart(uint8_tadv_idx)

Function: Resend advertising packet after the advertising set is stopped

Input parameter: adv_idx, advertising index

Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_ton failure.

After calling this API, a BLE_ADV_EVT_OP_RSP message will be sent to the
registered message handler to notify if the operation is started successfully. If
so, a BLE_ADV_EVT STATE_CHG message is also sent with state

22

°

AN152
GD32VW553 BLE Development Guide

GigaDevice
BLE_ADV_STATE_START
2.2.5. ble_adv_stop
Prototype: ble_status_t ble_adv_stop(uint8_t adv_idx)
Function: Stop sending advertising packets
Input parameter: adv_idx, advertising index
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_ton failure.
After calling this API, a BLE_ADV_EVT_OP_RSP message will be sent to the
registered message handler to notify if the operation is started successfully. If
so, after the adwertising set is stopped, a BLE_ADV_EVT STATE_CHG
message is also sent with state BLE_ADV_STATE_CREATE
2.2.6. ble_adv_remove
Prototype: ble_status_t ble_adv_remowve(uint8_t adv_idx)
Function: Delete the adwvertising set that no longer sends advertising packets.
If the advertising set is sending advertising packets, that is,
the stateis BLE_ ADV_STATE_START, first call ble_adv_stop to stop it,
and then call this function to removwe it.
Input parameter: adv_idx, advertising index
Output parameter: None
Return value: Return 0 on success, and return the error code definedin ble_status_t on failure.
After calling this API, a BLE_ADV_EVT_OP_RSP message will be sent to the
registered message handler to notify if the operation is started successfully.
2.217. ble_adv_data_update

Prototype: ble_status t ble adv data_update(uint8 t adv idx, ble adv data set t
*p_adv_data, ble_adv_data_set_t *p_scan_rsp_data, ble_adv_data_set_t *p_per_adv_data)

Function: Update the advdata, scan response data, and periodic advdata of
the advertising set which is sending advertising packets and
whose state is BLE_ADV_STATE_START

Input parameters: adv_idx, advertising index

23

e AN152
GD32VW553 BLE Development Guide

GigaDevice

p_adv_data, advertising data structure pointer
p_scan_rsp_data, scan response data structure pointer
p_per_adv_data, periodic advertising data structure pointer
Output parameter: None
Returnvalue: Return 0 on success, and returnthe error code defined in ble_status_tonfailure.

After calling this API, a BLE_ADV_EVT_OP_RSP message will be sent to the
registered message handler to notify if the operation is started successfully.
After execution, one or more BLE _ADV_EVT DATA UPDATE_INFO
messages will be sent to the callback function

2.3. BLE advertisingdata API

The header file is ble_adv_data.h.

The BLE adwertising data module mainly provides interfaces for searching for the specified
ad type in advertising data.

2.31. ble_adv_find

Prototype: uint8_t *ble_adv_find(uint8_t *p_data, uint16_t data_len, uint8_t ad_type,
uint8_t *p_len)

Function: Search for data of the specified ad type in advertising data
Input parameter: p_data, the address of advertising data for searching

data_len, the length of advertising data for searching

ad_type, the ad type to be searched
Output parameter: p_len, the length of the searched data value of the corresponding type
Return value: The address of the searched data value of the corresponding type.

If not found, return NULL

2.3.2. ble_adv_cmpl_name_find

Prototype: bool ble_adv_cmpl_name_find(uint8_t *p_data, uint16_t data_len,

uint8_t *p_name, uint16_t name_len)
Function: Search for the specified complete name in advertising data
Input parameter: p_data, the address of advertising data for searching

24

e AN152

GigaDevice GD32VW553 BLE Development Guide

data_len, the length of advertising data for searching

p_name, the address of the complete name to be searched
name_len, the length of the complete name to be searched
Output parameter: None
Return value: Return true if the specified complete name can be found in

adwertising data; otherwise, return false

2.3.3. ble_adv_short_name_find

Prototype: bool ble_adv_short_name_find (uint8_t *p_data, uint16_t data_len,
uint8_t *p_name, uint16_t name_len_min)

Function: Searchfor the specified short name in advertising data
Input parameter: p_data, the address of advertising data for searching

data_len, the length of advertising data for searching

p_name, the address of the short name to be searched

name_len_min, the minimum length that the short name needs to match
Output parameter: None
Return value: Return true if the specified short name can be found

in advertising data; otherwise, return false

2.34. ble_adv_srv_uuid_find

Prototype: bool ble_adv_srv_uuid_find(uint8_t *p_data, uint16_t data_len, ble_uuid_t*p_uuid)
Function: Search for the specified senice uuid in advertising data
Input parameter: p_data, the address of advertising data for searching

data_len, the length of advertising data for searching

p_uuid, the uuid structure pointer to be searched, including uuid

length and uuid content

Output parameter: None
Return value: Return true if the specified senice uuid can be found

in advertising data; otherwise, return false

25

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.3.5.

24,

24.1.

ble_adv_appearance_find

Prototype: bool ble_adv_appearance_find(uint8_t *p_data, uint16_tdata_len,
uint16_t appearance)

Function: Searchfor the specified appearance in advertising data
Input parameter: p_data, the address of advertising data for searching

data_len, the length of advertising data for searching

appearance, the appearance value to be searched
Output parameter: None
Return value: Return true if the specified appearance can be found

in advertising data; otherwise, return false

BLE scan API

The header file is ble_scan.h.

The BLE scan module mainly provides interfaces for searching for advertising data and
reports the search results.

Scan message type

APP can register a callback function in the BLE scan module, and the BLE scan module wil
send the following event message to APP through the callback function.

B BLE _SCAN EVT ENABLE RSP

This message is a response to notify APP if the scan enable procedure is successfully started
after APP calling ble_scan_enable API. The message data type is ble_scan_enable_rsp t,
including the operation status.

m BLE_SCAN_EVT DISABLE RSP

This messageis aresponse to notify APPifthe scan disable procedure is successfully started
after APP calling ble_scan_disable APIl. The message data type is ble_scan_disable_rsp t,
including the operation status.

m BLE_SCAN_EVT STATE_CHG

This message is sent to the callback function when the scan state changes. The message
datatypeis ble_scan_state chg_t,includingthe currentscan state and the reason for change.

m BLE_SCAN_EVT ADV_RPT

26

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

24.2,

2.4.3.

244,

This message is used to notify APP of the data received after the advertising packet is
scanned. The message data type is ble_gap_adv_report_info_t. The structure contains the
received advertising packet type, advertiser address, advertising sid, data, etc.

ble_scan_callback_register

Prototype: ble_status_t ble_scan_callback_register(ble_scan_ewt_handler_t callback)
Function: Register the callback function for processing BLE scan messages
Input parameter: callback, a function that processes BLE scan messages.

For the description of scan messages, see Scan message type.

Output parameter: None

Return value: Return 0 on success, and return the error code definedin ble_status_ton failure

ble_scan_callback_unregister

Prototype: ble_status_t ble_scan_callback unregister(ble_scan_evt_handler _t callback)
Function: Unregister the callback function from BLE scan module

Input parameter: callback, callback function to be unregistered

Output parameter: None

Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure

ble_scan_enable

Prototype: ble_status_t ble_scan_enable(woid)
Function: Enable BLE scan, and a BLE_SCAN_EVT_ADV_RPT message is sentto
the callback function to notify it of the scanned device.
Input parameter: None
Output parameter: None
Return value: Return 0 on success, and return the error code definedin ble_status_ton failure.

After calling this API, a BLE_SCAN_EVT_ENABLE_RSP message will be sent
to the registered message handler to notify if the operation is started
successfully. If so, after scan is enabled, a BLE_SCAN_EVT _STATE CHG
message is also sent with state BLE_SCAN_STATE_ENABLED

27

°

AN152
GD32VW553 BLE Development Guide

GigaDevice
245. ble_scan_disable
Prototype: ble_status_t ble_scan_disable(void)
Function: Disable BLE scan
Input parameter: None
Output parameter: None
Return value: Return 0 on success, and return the error code definedin ble_status_ton failure.
Aftercallingthis APl,aBLE_SCAN_EVT_DISABLE_RSP message will be sent
to the registered message handler to notify if the operation is started
successfully. If so, after scan is disabled, a BLE_SCAN_EVT_STATE CHG
message is also sent with state BLE_ SCAN_STATE_DISABLED
24.6. ble_scan_param_set
Prototype: ble_status_t ble scan_param_set (ble_gap_local_addr_type town_addr_type,
ble_gap_scan_param_t *p_param)
Function: Set BLE local address type and scan parameters used for scan
Input parameter: own_addr_type, local address type used for scan
p_param, scan parameter structure pointer, including scan type,
interval, window, etc.
Output parameter: None
Return value: Return 0 on success, and return the error code definedin ble_status_ton failure
24.7. ble_scan_param_get

Prototype: ble_status_t ble_scan_param_get (ble_gap_local_addr_type t
*p_own_addr_type, ble_gap_scan_param_t *p_param)
Function: Get BLE local address type and scan parameters used for scan
Input parameter: p_own_addr_type, pointer to local address type used for scan
p_param, scan parameter structure pointer, including scan type,
interval, window, etc.
Output parameter: None

Return value: Return 0 on success, and return the error code definedin ble_status_ton failure

28

°

AN152
GD32VW553 BLE Development Guide

GigaDevice
2.5. BLE connection API
The header file is ble_conn.h.
The BLE connection module mainly provides interfaces for creating connections, obtaining
peer device information, and obtaining or setting connection parameters.
2.51. Connection message type

APP can register a callback function in the BLE connection module, and the BLE connection
module will send the following event messages to APP through the callback function.

m BLE_CONN_EVT CONN_RSP

This message is a response to notify APP the result of calling ble_conn_connect API. The
message data type is ble_conn_conn_rsp_t, including status which indicates if the connect
procedure is started successfully.

m BLE_CONN_EVT DISCONN_RSP

This message is a response to notify APP the result of calling ble_conn_disconnectAPI. The
message data type is ble_conn_disconn_rsp_t, including status which indicates if the
disconnect procedure is started successfully.

m BLE_CONN_EVT CONN_CANCEL_RSP

This message is a response to notify APP the result of calling ble_conn_connect_cancel API.
The message data type is ble_conn_conn_cancel_rsp_t, including status which indicates if
the cancel procedure is started successfully.

m BLE_CONN_EVT SEC_INFO_SET RSP

This message is a response to notify APP the result of calling ble_conn_sec_info_set API.
The message data type is ble_conn_sec_info_set rsp_t, including status which indicates if
the keys stored by APP are sent to BLE stack successfully.

m BLE_CONN_EVT INIT_STATE_CHG

This message is sent to the callback function when the state changes during active creation
of connections. The data type is ble_init_state_chg_t, including the current state, the reason
for state change, and whether the filter accept listis used.

m BLE_CONN_EVT STATE_CHG

This message is sent to the callback function after the connection state changes. The data
type is ble_conn_state chg_t, which contains the new state. When the state is
BLE_CONN_STATE_CONNECTED, it also contains information of connections whose
structure is ble_gap_conn_info_t. When the state is BLE_CONN_STATE_DISCONNECTD, it
also contains the information of disconnections whose structure is ble_gap_disconn_info_t.

29

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

m BLE_CONN_EVT PEER NAME_GET RSP

This message returns the result of APP calling ble_conn_peer_name_get to get the name
information in the peer GATI database. The message data type is
ble_gap_peer_name_get_rsp_t, including the status of the obtained attribute. If the status is
BLE_ERR_NO_ERROR, it also contains the attribute handle, name length, name content,
etc.

m BLE_CONN_EVT PEER_VERSION GET RSP

This message returns the result of APP calling ble_conn_peer_version_get to get the peer
version information. The message data type is ble_gap_peer_ver_get_rsp_t, including the
status of the obtained version. If the status is BLE_ ERR_NO_ERROR, it also contains the
company id, Imp version, Imp subversion, etc.

m BLE_CONN_EVT PEER_FEATS GET RSP

This message returns the result of APP calling ble_conn_peer_feats_get to get the
information of features supported by the peer device. The message data type is
ble_gap_peer_feats_get_rsp_t, including the obtained status. If the status is
BLE_ERR NO_ERROR, it also contains the feature array supported by the peer, etc.

m BLE_CONN_EVT PEER _APPEARANCE GET RSP

This message returns the result of APP calling ble_conn_peer_appearance_get to get the
appearance information in the peer GATT database. The message data type is
ble_gap_peer_appearance_get_rsp_t, including the status of the obtained attribute. If the
status is BLE ERR_NO_ERROR, it also contains the attribute handle, appearance, etc.

m BLE_CONN_EVT PEER_SLV_PRF_PARAM_GET RSP

This message returns the result of APP calling ble_conn_peer_slave_prefer_param_get to
get the information of the attribute slave preferred parameter in the peer GATT database. The
message data type is ble_gap_slave _prefer param_get rsp _t, including the status of the
obtained attribute. Ifthe status is BLE_ERR_NO_ERROR, it also contains the attribute handle,
slave preferred connection interval, latency, etc.

m BLE_CONN_EVT PEER _ADDR _RESLV_GET RSP

This message returns the result of APP calling ble_conn_peer_addr_resolution_support_get
to get the information of the attribute central address resolution support in the peer GATT
database. The message data type is ble_gap peer_addr resol_get rsp_t, including the
status of the obtained attribute. If the status is BLE_ ERR_NO ERROR, it also contains the
attribute handle, central address resolution support, etc.

m BLE_CONN_EVT PEER_RPA_ONLY_GET RSP

This message returns the result of APP calling ble_conn_peer _rpa_only get to get the
information of the attribute resolvable private address only in the peer GATT database. The
message data type is ble_gap_peer _rpa_only get rsp_t, including the status of the obtained

30

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

attribute. If the status is BLE_ERR_NO_ERROR, it also contains the attribute handle,
resolvable private address only, etc.

m BLE_CONN_EVT PEER DB _HASH GET RSP

This message returns the result of APP calling ble_conn_peer_db_hash_get to get the
information of the attribute database hash in the peer GATT database. The message data
type is ble_gap_peer_db_hash_get_rsp_t, including the obtained status. If the status is
BLE_ERR_NO_ERROR, it also contains the attribute handle, database hash etc.

m BLE_CONN_EVT PING_TO VAL GET RSP

This message returns the result of APP calling ble_conn_ping_to_get to get the BLE link ping
timeout value. The message datatypeis ble_gap_ping_tout_get_rsp_t,including the obtained
status. If the statusis BLE_ERR_NO_ERROR, it also contains the ping timeout value.

m BLE_CONN_EVT PING_TO_INFO

This message is used to actively notify APP after ping timeout. The message data type is
ble_gap_ping_tout_info_t, including the connection index where the ping timeout occurs.

m BLE_CONN_EVT PING_TO_SET RSP

This message returns the result of APP calling ble_conn_ping_to_set to set the ping timeout
value. The message data type is ble_gap_ping_tout _set_rsp_t, including the set status, etc.

m BLE_CONN_EVT RSS| GET RSP

This message returns the result of APP calling ble_conn_rssi_get to get the RSSI of the last
packet successfully received through the corresponding connection. The message data type
is ble_gap_peer_feats_get_rsp_t, including the obtained status. If the status is
BLE_ERR_NO_ERROR, it also contains the RSSI, etc.

m BLE_CONN_EVT CHANN MAP_GET RSP

This message returns the result of APP calling ble_conn_chann_map_get to get the channel
map used by the corresponding connection. The message data type is
ble_gap_chann_map_get rsp_t, including the obtained status. If the status is
BLE_ERR_NO_ERROR, it also contains the channel map array information.

m BLE_CONN_EVT NAME_GET_IND

This message is used to notify APP when the peer device tries to get the local name. The
message data type is ble_gap_name_get_ind_t, including the start offset and the maximum
name length of the name to return. APP can call ble_conn_name_get_cfm to reply.

m BLE_CONN_EVT APPEARANCE_GET IND

This message is used to notify APP when the peer device tries to get the local appearance.
The message data type is ble gap appearance get ind t. APP can call
ble_conn_appearance_get_cfm to reply.

31

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

m BLE_CONN_EVT SLAVE_PREFER PARAM GET _IND

This message is used to notify APP when the peer device tries to get the local slave preferred
parameter attribute. The message data type is ble_gap_slave_prefer_param_get_ind t. APP
can call ble_conn_slave_prefer_param_get_cfm to reply.

m BLE_CONN_EVT NAME_SET IND

This message is used to notify APP when the peer device tries to set the local name. The
message data type is ble_gap_name_set_ind_t, including the name length and name content
to be set. APP can call ble_conn_name_set_cfm to reply.

m BLE_CONN_EVT APPEARANCE_SET IND

This message is used to notify APP when the peer device tries to set the local appearance.
The message datatype is ble_gap_appearance_set_ind_t, including the appearance value
to be set. APP can call ble_conn_appearance_set_cfm to reply.

m BLE_CONN_EVT PARAM_UPDATE_IND

This message is used to notify APP when the peer initiates the connection parameter update.
The message data type is ble_gap_conn_param_update_ind t, including parameters such
as connection interval, latency, and supenvision timeout that the peer wants to update. APP
can call ble_conn_param_update _cfm to reply.

m BLE_CONN_EVT PARAM_UPDATE_RSP

This message returns the result of APP calling ble_conn_param_update_req to initiate the
connection parameter update. The message type is ble_gap_conn_param_update_rsp t,
including the update status.

m BLE_CONN_EVT _PARAM_UPDATE_INFO

This message is used to notify APP after the connection parameter update initiated by the
peer or local device is completed. The message data type is ble_gap_conn_param_info t,
including the connection interval, latency, supenvision timeout, etc. used after the update.

m BLE_CONN_EVT PKT SIZE_SET RSP

This message returns the result of APP calling ble_conn_pkt_size set to set the size of
packets sent by the local device. The message data type is ble_gap_pkt_size_set rsp t,
including the set status.

m BLE_CONN_EVT PKT SIZE_INFO

This message is used to notify APP after the packet size update initiated by the peer or local
device is completed. The message data type is ble_gap_pkt_size _info_t, including the max
tx octets, max tx time, max rx octets, and max rx time.

m BLE_CONN_EVT PHY GET RSP

This message returns the result of APP calling ble_conn_phy_get to get the PHY information
32

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

used by the connection. The message data type is ble_gap_phy_get_rsp_t, including the
obtained status.

m BLE_CONN_EVT PHY_SET RSP

This message returns theresult of APP calling ble_conn_phy_set to set the PHY used by the
connection. The message data type is ble_gap_phy_set_rsp_t, including the set status.

m BLE_CONN_EVT PHY_INFO

This message is used to notify APP of the currently used PHY information after APP gets the
connection PHY information and APP or the peer completes the setting of connection PHY.
The message data type is ble_gap_phy_info_t, including the tx PHY and rx PHY information
of the current connection.

m BLE_CONN_EVT LOC_TX PWR _GET RSP

This message returns the result of APP calling ble_conn_local_tx_pwr_get to get the local
transmit power. The message data type is ble_gap_local_tx_pwr_get_rsp_t, including the
obtained status. If the status is BLE_ ERR_NO_ERROR, it also contains the obtained PHY,
the currently used transmit power on the corresponding PHY, and the maximum transmit
power.

m BLE_CONN_EVT PEER_TX PWR_GET RSP

This message returns the result of APP calling ble_conn_peer_tx_pwr_get to get the peer
transmit power. The message data type is ble_gap_peer_tx_pwr_get_rsp_t, including the
obtained status. If the status is BLE_ERR_NO_ERROR, it also contains the obtained PHY,
the transmit power on the corresponding PHY used by the peer, and power flags.

m BLE_CONN_EVT TX PWR _RPT CTRL RSP

This message returns the result of APP calling ble_conn_tx_pwr_report_ctrl to setthe transmit
power report. The message data type is ble_gap_tx_pwr_report_ctrl_rsp_t, including the set
status.

m BLE_CONN_EVT LOC_TX PWR_RPT INFO

This message is used to notify APP after APP calls ble_conn_tx_pwr_report_ctrl to enable
the report when the local transmit power changes. The message data type is
ble_gap_tx_pwr_report_info_t, including the PHY reported by the local device, the transmit
power on the corresponding PHY, power flags, and changed transmit power delta.

m BLE_CONN_EVT PEER_TX PWR_RPT INFO

This message is used to notify APP after APP calls ble_conn_tx_pwr_report_ctrl to enable
the report when the peer transmit power changes. The message data type is
ble_gap_tx_pwr_report_info_t, including the PHY reported by the peer device, the transmit
power on the corresponding PHY, power flags, and changed transmit power delta.

m BLE_CONN_EVT PATH_LOSS_CTRL RSP
33

°

AN152
GD32VW553 BLE Development Guide

GigaDevice
This message returns the result of APP calling ble_conn_path_loss_ctrl to set the path loss.
The message data type is ble_gap_path_loss_ctrl_rsp_t, including the set status.
m BLE CONN_EVT PATH LOSS THRESHOLD_INFO
This message is used to notify APP after APP calls ble_conn_path_loss_ctrl to set the path
loss and the path loss zone <changes. The message data type is
ble_gap_path_loss_threshold_info_t, including the current path loss value and the
corresponding zone information.
B BLE CONN_EVT PER SYNC _TRANS RSP
This message returns the result of APP callingble_conn_per_adv_sync_transto sync transfer
periodic adwertising to the peer device. The message type is
ble gap_per _adv_sync_trans_rsp _t, including the transfer success or failure status.
25.2. ble_conn_callback_register
Prototype: ble_status_t ble_conn_callback_register(ble_conn_evt_handler_t callback)
Function: Register the callback function for processing BLE connection messages
Input parameter: callback, a function that processes BLE connection messages. For
the description of connection messages, see Connection message type.
Output parameter: None
Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure
2.53. ble_conn_callback_unregister
Prototype: ble_status_t ble_conn_callback_unregister(ble_conn_ewvt_handler_t callback)
Function: Unregister the callback function from the BLE connection module
Input parameter: callback, a function that processes BLE connection messages
Output parameter: None
Return value: Return 0 on success, and return the error code definedin ble_status_tonfailure
2.54. ble_conn_connect

Prototype: ble_status_t ble_conn_connect(ble_gap_init param_t *p_param,
ble gap _local_addr type town_addr_type,
ble_gap_addr_t *p_peer_addr_info, bool use_wl)

Function: Initiate BLE connection

34

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.5.5.

2.5.6.

Input parameters: p_param, the parameter structure pointer used when initiating connections,

including the connection interval, window, etc.

own_addr_type, the local address type used when creating connections
p_peer_addr_info, the peer device address information pointer

use_wl, indicating whether FAL is used; if yes, it will connect to the device

in FAL instead of the address specified by p_peer_addr_info.

Output parameter: None

Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure.

After calling this API, a BLE_CONN_EVT_CONN_RSP message is sent to the
callback function to notify if create connection procedure is started successfully.
If so, a BLE_CONN_EVT_STATE_CHG message is also sent with state as
BLE _CONN_STATE_CONNECTED. The connection index included in the
connection info can be used for subsequent operations.

ble_conn_disconnect

Prototype: ble_status_t ble_conn_disconnect(uint8_t conidx, uint16_t reason)

Function: Disconnect BLE connection

Input parameter: conidx, BLE connection index, which can be obtained in the connection

reason, the reason for disconnection; use BLE_ERROR_HL_TO_HCI

(BLE_LL_ERR xxx),and BLE_LL_ERR xxx s the error code of the

LL group in ble_err_t

Output parameter: None

Returnvalue: Return 0 on success, and return the error code definedin ble_status_tonfailure.

After calling this API, a BLE_CONN_EVT_DISCONN_RSP message will be
sent to the callback function to notify if disconnect procedure is started

successfully. If SO0, after successful disconnection,
BLE_CONN_EVT STATE_CHG message is also sent

BLE_CONN_STATE_DISCONNECTED

ble_conn_connect_cancel

Prototype: ble_status_t ble_conn_connect_cancel(woid)
Function: Cancel the BLE connection being initiated

Input parameter: None

a

state

35

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.5.7.

2.5.8.

Output parameter: None
Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure.

Aftercallingthis APl,aBLE_CONN_EVT_CONN_CANCEL_RSP message will
be sent to the callback function to notify if cancel procedure is started
successfully

ble_conn_sec_info_set

Prototype: ble_status_t ble_conn_sec _info_set(uint8 t conidx, uint8_t*p_local_csrk,
uint8_t *p_peer_csrk, uint8_t pairing_IV,
uint8 tenc_key_present)
Function: IfAPP manages security keys, after receiving the
BLE_CONN_EVT_STATE_CHG message showing the connection state is
BLE_CONN_STATE_CONNECTED, it should call this API to transfer key
information to BLE stack.
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
p_local_csrk, local CSRK
p_peer_csrk, peer CSRK
pairing_IM, pairing level
enc_key_present, which indicates whether encryption key is present
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_tonfailure.

Aftercalling this APl,aBLE_CONN_EVT_SEC_INFO_SET_RSP message will
be sent to the callback function to notify if cancel procedure is started
successfully.

ble_conn_peer_name_get

Prototype: ble_status_t ble_conn_peer_name_get(uint8_t conidx)
Function: Get the name of the peer device that has established a connectionin
the GATT database

Input parameter: conidx, BLE connection index, which can be obtained in

36

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.5.9.

2.5.10.

the connection success message
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execution,
aBLE_CONN_EVT _PEER_NAME_GET_RSP

message is sent to the callback function

ble_conn_peer_feats_get

Prototype: ble_status_t ble_conn_peer_feats_get(uint8_t conidx)
Function: Get the features supported by the peer device that has established a connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
Output parameter: None
Return value: Return 0 on successful execution, and return the error code defined in
ble_status_t on failure. After execution,
aBLE_CONN_EVT PEER_FEATS_GET_RSP

message is sent to the callback function

ble_conn_peer_appearance_get

Prototype: ble_status_t ble_conn_peer_appearance_get(uint8_t conidx)
Function: Get the appearance of the peer device that has established a connection in
the GATT database
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execution,
aBLE_CONN_EVT_PEER_APPEARANCE_GET_RSP

message is sentto the callback function

37

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.5.11.

2.5.12.

2.5.13.

ble_conn_peer_version_get

Prototype: ble_status_t ble_conn_peer version_get(uint8_t conidx)
Function: Get the version information of the peer device that has established a connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execution,
aBLE_CONN_EVT PEER _VERSION_GET_RSP

message is sent to the callback function

ble_conn_peer_slave_prefer_param_get

Prototype: ble_status_t ble_conn_peer_slave_prefer_param_get(uint8_t conidx)
Function: Get the slave prefer parameters attribute of the peer device that has
established a connection in the GATT database
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execdution,
aBLE_CONN_EVT PEER_SLV_PRF_PARAM_GET_RSP

message is sentto the callback function

ble_conn_peer_addr_resolution_support_get

Prototype: ble_status_t ble_conn_peer_addr_resolution_support_get(uint8_t conidx)

Function: Get the address resolution support atfribute of the peer device that has
established a connection in the GATT database

Input parameter: conidx, BLE connection index, which can be obtained in

the connection success message

38

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.5.14.

2.5.15.

Output parameter: None

Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execution,
aBLE_CONN_EVT PEER_ADDR_RESLV_GET_RSP

message is sent to the callback function

ble_conn_peer_rpa_only_get

Prototype: ble_status_t ble _conn_peer_rpa_only_get(uint8_t conidx)
Function: Get the RPAonly attribute of the peer device that has established a connection
in the GATT database
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message

Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_ton failure. After execdution,

aBLE_CONN_EVT PEER_RPA_ONLY_GET_RSP

message is sent to the callback function

ble_conn_peer_db_hash_get

Prototype: ble_status_t ble_conn_peer_db_hash_get(uint8_t conidx)
Function: Get the database hash attribute of the peer device that has
established a connection in the GATT database
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message

Output parameter: None

Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execution,
aBLE_CONN_EVT PEER DB _HASH_GET_RSP

message is sent to the callback function

39

e AN152

GigaDevice GD32VW553 BLE Development Guide

2.5.16. ble_conn_phy_get

Prototype: ble_status_t ble_conn_phy_get(uint8_t conidx)
Function: Get the PHY being used by the established connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message

Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_ton failure. After execdution,

aBLE_CONN_EVT PHY_GET_RSP

message is sent to the callback function. If the PHY is successfully obtained,

aBLE_CONN_EVT_PHY_INFO message is also sent to the callback function

2.517. ble_conn_phy_set

Prototype: ble_status_t ble_conn_phy_set(uint8_t conidx, uint8_t tx_phy, uint8_trx_phy,
uint8_t phy_opt)
Function: Set the PHY used by the established connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
tx_phy, the PHY bitfield used by tx, which is composed of ble_gap _le_phy bf t
rx_phy, the PHY bitfield used by rx, which is composed of ble_gap_le_phy_bf t
phy_opt, in the case of coded PHY, set the preference of S=2 or S=8
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execution,
aBLE_CONN_EVT PHY_SET RSP
message is sent to the callback function. After the PHY is successfully set,

aBLE_CONN_EVT_PHY_INFO message is also sent to the callback function

40

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.5.18.

2.5.19.

2.5.20.

ble_conn_pkt_size_set

Prototype: ble_status_t ble_conn_pkt_size set(uint8_t conidx, uint16_ttx_octets,
uint16_t tx_time)
Function: Set the maximum packet size that an established connection can use
when transmitting
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
tx_octets, the maximum number of octets in the tx packet
tx_time, the maximum time for sending tx packets
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execution,
aBLE_CONN_EVT PKT_SIZE_SET RSP
message is sent to the callback function. After packet size is successfully set,

aBLE_CONN_EVT PKT_SIZE INFO message is sent to the callback function.

ble_conn_chann_map_get

Prototype: ble_status_t ble_conn_chann_map_get(uint8_t conidx)

Function: Get the channel map used by the established connection

Input parameter: conidx, BLE connection index, which can be obtained in

the connection success message

Output parameter: None

Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execution,
aBLE_CONN_EVT_CHANN_MAP_GET_RSP

message is sent to the callback function

ble_conn_ping_to_get

Prototype: ble_status_t ble_conn_ping_to_get(uint8_t conidx)

41

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.5.21.

2.5.22.

Function: Get the ping timeout value of the established connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execution,
aBLE_CONN_EVT PING_TO_VAL_GET RSP

message is sent to the callback function

ble_conn_ping_to_set

Prototype: ble_status_t ble_conn_ping_to_set(uint8_t conidx, uint16_t tout)
Function: Set the ping timeout value of the established connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
tout, ping timeout value, in 10 ms
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execution,
aBLE_CONN_EVT PING_TO_SET RSP

message is sent to the callback function

ble_conn_rssi_get

Prototype: ble_status_t ble_conn_rssi_get(uint8 t conidx)
Function: Get the rssi of the packet recently received on the established connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execution,

aBLE_CONN_EVT RSSI_GET RSP
42

e AN152

GigaDevice GD32VW553 BLE Development Guide

message is sent to the callback function.

2.5.23. ble_conn_param_update_req

Prototype: ble_status_t ble_conn_param_update_req (uint8_t conidx, uint16_t interval,
uint16_t latency, uint16_t supv_to, uint16_t ce_len)
Function: Set connection parameters of the established connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
interval, the connection event period to be set, in 1.25 ms
latency, the maximum number of connection events for the master packet
that the slave does not need to listen to
supv_to, disconnection timeout, in 10 ms
ce_len, the length of connection events, in 0.625 ms
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execution,
aBLE_CONN_EVT_PARAM_UPDATE_RSP message is sentto
the callback function. After the connection parameters are successfully updated,
aBLE_CONN_EVT_PARAM_UPDATE_INFO

message is also sent to the callback function

2.5.24. ble_conn_per_adv_sync_trans

Prototype: ble_status_t ble_conn_per_adv_sync_trans(uint8_t conidx, uint8 ttrans_idx,
uint16_t srv_data)
Function: Forward periodic advertising information to the peer device that has
established a connection, so that it can directly initiate sync
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
trans_idx, the index to be forwarded, which can be the index of periodic

adwertising created by the local device or the sync index after the

43

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.5.25.

2.5.26.

local sync is successful
srv_data, the senice data that APP can set
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execution,
aBLE_CONN_EVT _PER_SYNC_TRANS_RSP

message is sent to the callback function

ble_conn_name_get_cfm

Prototype: ble_status_t ble_conn_name_get_cfm(uint8_t conidx, uint16_t status,
uint16_t token, uint16_t cmpl_len, uint8_t *p_name, uint16_t name_len)
Function: This function is used to reply the request initiated by the peer device to get
the local name after receiving the BLE_CONN_EVT_NAME_GET_IND
message in the callback function
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
status, the confirm status; if there is an error or exception,
fill in the error code; otherwise, fill in 0
token, message token, which is obtained in the
BLE_CONN_EVT _NAME_GET_IND message
cmpl_len, the total length of the local name
p_name, a pointer to the complete or partial content of the replied name
name_len, the length of the name in this reply. If the complete
name is replied, the length is equal to cmpl_len
Output parameter: None

Return value: Return 0 on success, andreturn the error code defined in ble_status_tonfailure

ble_conn_appearance_get_cfm

Prototype: ble_status_t ble_conn_appearance _get cfm(uint8 t conidx, uint16_t status,

uint16_ttoken, uint16_tappearance)

44

e AN152

GigaDevice GD32VW553 BLE Development Guide

Function: This function is used to reply the request initiated by the peer device to get

the local appearance after receiving the
BLE_CONN_EVT_APPEARANCE_GET_IND
message in the callback function
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
status, the confirm status; if there is an error or exception,
fill in the error code; otherwise, fill in 0
token, which is obtained in the
BLE_CONN_EVT _APPEARANCE_GET_IND message
appearance, the local appearance replied
Output parameter: None

Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure

2.5.27. ble_conn_slave_prefer_param_get_cfm

Prototype: ble_status_t ble_conn_slave_prefer_param_get_cfm (uint8_t conidx,
uint16_t status, uint16_t token, ble_gap_prefer_periph_param_t *p_param)
Function: This function is used to reply the request initiated by the peer device to get
the slave prefer parameter after receiving
the BLE_CONN_EVT_SLAVE_PREFER_PARAM _GET_IND
message in the callback function
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
status, the confirm status; if there is an error or exception,
fill in the error code; otherwise, fill in 0
token, which is obtained in the
BLE_CONN_EVT_SLAVE _PREFER_PARAM_GET_IND message
p_param, slave prefer parameter structure pointer, including the
interval, latency, etc.

Output parameter: None
45

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.5.28.

2.5.29.

Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure

ble_conn_name_set_cfm

Prototype: ble_status_t ble_conn_name_set_cfm (uint8_t conidx, uint16_t status,
uint16_t token)
Function: This function is used to reply the request initiated by the peer device to set
the local name after receiving the BLE_ CONN_EVT_NAME_SET_IND
message in the callback function
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
status, the confirm status; if there is an error or exception,
fill in the error code; otherwise, fill in 0
token, which is obtained in
the BLE_CONN_EVT NAME_SET IND message
Output parameter: None

Returnvalue: Return 0 on success, and return the error code defined in ble_status_tonfailure

ble_conn_appearance_set_cfm

Prototype: ble_status_t ble_conn_appearance_set_cfm(uint8_t conidx, uint16_t status,
uint16_t token)
Function: This function is used to reply the request initiated by the peer device to set the local
appearance after receiving the
BLE_CONN_EVT_APPEARANCE_SET_IND message in the callback function
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
status, the confirm status; if there is an error or exception,
fill in the error code; otherwise, fill in 0
token, which is obtained in
the BLE_CONN_EVT_APPEARANCE_SET_IND message

Output parameter: None

46

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.5.30.

2.5.31.

Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure

ble_conn_param_update_cfm

Prototype: ble_status_t ble_conn_param_update_cfm(uint8_t conidx, bool accept,
uint16_t ce_len_min, uint16_t ce_len_max)
Function: This function is used to reply the connection parameter update request
initiated by the peer device after receiving
the BLE_CONN_EVT_PARAM_UPDATE_IND message in the callback function
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
accept, true means to accept the connection parameter update request;
otherwise, return false
ce_len_min, the minimum time of connection events, in 0.625 ms
ce_len_max, the maximum time of connection events, in 0.625 ms
Output parameter: None

Returnvalue: Return 0 on success, and returnthe error code defined in ble_status_tonfailure

ble_conn_local_tx_pwr_get

Prototype: ble_status_t ble_conn_local_tx_pwr_get(uint8_t conidx,
ble_gap_phy _pwr value_t phy)
Function: Get the local transmit power on the corresponding PHY of
the established connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
phy, the PHY corresponding to the obtained power

Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_ton failure. After execution,

aBLE_CONN_EVT LOC_TX PWR_GET_RSP

message is sent to the callback function

47

e AN152
GD32VW553 BLE Development Guide

GigaDevice

2.5.32. ble_conn_peer_tx_pwr_get

Prototype: ble_status_t ble_conn_peer_tx_pwr_get (uint8_t conidx,
ble_gap_phy_pwr_value_t phy)
Function: Get the peer transmit power used on the corresponding PHY of
the established connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
phy, the PHY corresponding to the obtained power
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execution,
aBLE_CONN_EVT PEER_TX PWR_GET_RSP

message is sent to the callback function

2.5.33. ble_conn_tx_pwr_report_ctrl

Prototype: ble_status_t ble_conn_tx_pwr_report_ctrl(uint8_t conidx, uint8_t local_en,
uint8 tremote_en)
Function: Set whether to send a notification to APP when the local or peer
transmit power changes on the established connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
local_en, whether to notify APP when the local transmit power changes
remote_en, whether to notify APP when the peer transmit power changes
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execution,
aBLE_CONN_EVT TX PWR_RPT_CTRL_RSP
message is sent to the callback function. If local enable is successfully set,
when the local transmit power changes,

48

°

AN152
GD32VW553 BLE Development Guide

GigaDevice
aBLE_CONN_EVT LOC_TX PWR_RPT_INFO
message is sent to the callback function. If remote enable is successfully set,
when the peer tx power changes,
aBLE_CONN_EVT PEER_TX PWR_RPT_INFO
message is sent to the callback function
2.5.34. ble_conn_path_loss_ctrl

Prototype: ble_status_t ble _conn_path_loss_ctrl (uint8 t conidx, uint8_t enable,
uint8_thigh_threshold, uint8_t high_hysteresis, int8_tlow_threshold,
uint8_t low_hysteresis, uint16_t min_time)
Function: Set the path loss notification on the established connection
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
enable, whether to notify of path
loss high_threshold, the threshold of path loss in the high zone
high_hysteresis, the hysteresis value of the high threshold
low_threshold, the threshold of path loss in the low zone
low_hysteresis, the hysteresis value of the low threshold
min_time, the minimum number of connection events to stay after
the path changes
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execution,
aBLE_CONN_EVT _PATH_LOSS_CTRL_RSP
message is sent to the callback function. Ifit is successfully setto enable,
when the path zone changes,
aBLE_CONN_EVT PATH_LOSS_THRESHOLD_INFO

message is sent to the callback function

49

°

AN152
GD32VW553 BLE Development Guide

GigaDevice
2.5.35. ble_conn_enable_central_feat
Prototype: ble_status_t ble_conn_enable_central_feat(uint8_t conidx)
Function: When the device serves as peripheral, it actively obtains and configures the central
gap senvice information.
Input parameter: conidx, BLE connection index, which can be obtained in
the connection success message
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure.
2.6. BLE security API
The header file is ble_sec.h.
The BLE security module mainly provides interfaces required for interaction during pairing,
authentication, encryption, and other processes.
2.61. Security message type

APP can register a callback function with the BLE security module, and the BLE securty
module will send the following event messages to APP through the callback function.

m BLE_SEC_EVT PAIRING_REQ_IND

This message is used to notify APP after the pairing request initiated by the peer device is
received. The message data type is ble_gap_ pairing_req_ind_t, including the peer
authentication request level, etc. APP can call ble_sec_pairing_req_cfm to reply.

m BLE_SEC_EVT LTK_REQ_IND

This message is used to get the long term key of the paired device from APP during
authentication. The message data type is ble_gap_Itk_req_ind_t, including the LTK size
information. APP can call ble_sec_lItk_req_cfm to reply.

m BLE_SEC_EVT KEY _DISPLAY_REQ_IND

This message is used to get the PIN CODE from APP during pairing. The message data type
is ble_gap_tk_req_ind_t, including the connection index information. APP can cal
ble_sec_key display_enter_cfm to reply.

m BLE_SEC_EVT KEY _ENTER_REQ_IND

This message is used to notify APP when the user is required to enter the passkey during
50

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

pairing. The message data type is ble_gap_tk_req_ind_t, including the connection index
information. APP can call ble_sec_key_display_enter_cfm to reply.

m BLE_SEC_EVT KEY_OOB_REQ IND

This message is used to notify APP when APP is required to use OOB data as the temp key.
The message data typeis ble_gap_tk_req_ind_t, including the connection index information.
APP can call ble_sec_oob_req_cfm to reply.

m BLE_SEC_EVT NUMERIC_COMPARISON_IND

This message is used to notify APP when the user is required to compare the generated
number on both sides during pairing. The message data type is ble_gap_nc_ind_t, including
the number to be compared. APP can call ble_sec_nc_cfm to reply.

m BLE_SEC EVT IRK_REQ IND

This message is used to notify APP when the local IRK needs to be obtained and distributed
during pairing. The message data type is ble_gap_irk_req_ind_t, including the connection
index information. APP can call the ble_sec_irk_req_cfm function to reply.

m BLE_SEC_EVT CSRK REQ_IND

This message s used to notify APP when the local CSRK needs to be obtained and distributed
during pairing. The message data type is ble_gap_csrk_req_ind_t, including the connection
index information. APP can call the ble_sec_csrk_req_cfm function to reply.

m BLE_SEC_EVT OOB_DATA_REQ_IND

This message is used to get OOB data from APP when using the OOB mode during pairing.
The message data type is ble_gap _oob_data _req_ind_t, including the connection index
information. APP can call the ble_sec_oob_data_req_cfm function toreply.

m BLE_SEC_EVT PAIRING_SUCCESS_INFO

This message is used to notify APP after the pairing is successful. The message data type is
ble sec pairing_success_t, including whether it is a secure connection, the pairing level, etc.

m BLE_SEC_EVT PARING_FAIL_INFO

This message is used to notify APP when the pairing fails. The message data type is
ble_sec_pairing_fail_t, including the reason for pairing failure, etc.

m BLE_SEC_EVT _SECURITY_REQ_INFO

This message is used to notify APP when the master receives the security request initiated
by the peer slave. The message data type is ble_sec_security_req_info_t, including the
authentication request level and other information of the peer device. APP can decide to
initiate encryption or pairing based on whether there is a LTK from the peer device after
receiving the message.

m BLE_SEC_EVT_ENCRYPT REQ_IND
51

°

AN152
GD32VW553 BLE Development Guide

GigaDevice
This message is used to notify APP after the encryption requestinitiated by the peer device
is received. The message datatypeis ble_gap_encrypt _req_ind_t, including the ediv, random
number, etc. APP can call ble_sec_encrypt_req_cfm to reply.
B BLE_SEC_EVT_ENCRYPT_INFO
This message is used to notify APP after encryption is completed. The message data type is
ble_sec_encrypt_info_t, including the encryption success or failure status. If successful, it
also contains the pairing level and other information.
B BLE_SEC_EVT_OOB_DATA_GEN_INFO
This message is used to notify APP after APP calls ble_sec_oob_data_gen togenerate a set
of OOB data. The message data type is ble_sec_oob_data_info_t, including the generated
OOB data.
B BLE _SEC EVT KEY_PRESS_NOTIFY_RSP
This message returns the result of APP calling ble_sec_key_press_notify. The message data
typeis ble_gap_key press_nif rsp_t, including the status of sending key press notification.
B BLE_SEC_EVT _KEY_PRESS_INFO
This message is used to notify APP after the key press notification of the peer device is
received. The message data type is ble_gap_key pressed_info_t, including the key press
type and other information of the peer device.
2.6.2. ble_sec_callback_register
Prototype: ble_status_t ble_sec callback_register(ble_sec ewvt_handler _t callback)
Function: The interface is used to register the event message handler with
the BLE security module.
Input parameter: callback, callback handler. For the description of security messages,
See Security message type.
Output parameter: None
Returnvalue: Return 0 on success, and returnthe error code defined in ble_status_tonfailure.
2.6.3. ble_sec_callback_unregister

Prototype: ble_status_t ble_sec_callback_unregister(ble_sec_ewt_handler_t callback)
Function: Unregister the callback function from BLE security module
Input parameter: callback, callback function to be unregistered

Output parameter: None

52

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.6.4.

2.6.5.

2.6.6.

Return value: Return 0 on success, and return the error code defined in ble_status_tonfailure.

ble_sec_security_req

Prototype: ble_status_t ble_sec_security_req(uint8_t conidx, uint8_t auth)
Function: Send a security request message for active pairing as a slave.
Input parameter: conidx, connection index
auth, indicating the pairing security type. Refer to the enum
ble_gap_auth_mask_t.
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_ton failure.

ble_sec_bond_req

Prototype:ble_status_tble_sec_bond_req(uint8_t conidx,
ble_gap_pairing_param_t*p_param, uint8_tsec_req_level)
Function: Send a pairing request message for active pairing as a master, or respond to
the security request from the peer slave to initiate pairing after receiving
the BLE_SEC_EVT _SECURITY_REQ_INFO message
Input parameter: conidx, connection index
p_param, the parameter of the pairing request message. Refer to
the structure ble_gap_pairing_param_t
sec_req_lewel, security request level. Refer to the enumble_gap sec req t
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_ton failure.
ble_sec_encrypt_req

Prototype: ble_status_t ble_sec_encrypt req(uint8_t conidx, ble_gap Itk t *p_peer_ltk)
Function: Send an encryption request when there is a LTK from the peer device

Input parameter: conidx, connection index

53

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.6.7.

2.6.8.

p_peer_ltk, the peer Itk
Output parameter: None
Return value: Return 0 on successful execution, and return the error code defined in

ble status_ton failure.

ble_sec_key press_notify

Prototype: ble_status_t ble_sec_key press_notify(uint8_t conidx, uint8_t type)
Function: Send a keypress notify message
Input parameter: conidx, connection index
type, 0: Passkey entry started
1: Passkey digitentered
2: Passkey digit erased
3: Passkey cleared
4: Passkey entry completed
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execution,
aBLE_SEC_EVT_KEY_PRESS_NOTIFY_RSP

message is sent to the callback function

ble_sec_key _display_enter_cfm

Prototype: ble_status_t ble_sec key display_enter cfm(uint8 t conidx, bool accept,
uint32_t passkey)
Function: This function is used to reply PIN CODE or passkey during pairing
after receiving BLE_SEC_EVT_KEY_DISPLAY_REQ_IND
or BLE_SEC_EVT_KEY_ENTER_REQ_IND in the callback function.
Input parameter: conidx, connection index
accept, whether to accept the request
passkey, the value range is 000000-999999

Output parameter: None

54

°

AN152
GD32VW553 BLE Development Guide

GigaDevice

Return value: Return 0 on successful execution, and return the error code

defined in ble_status_ton failure.
2.6.9. ble_sec_oob_req_cfm

Prototype: ble_status_t ble_sec_oob_req_cfm(uint8_t conidx, bool accept, uint8_t *p_key)

Function: This function is used to reply OOB TK during pairing after receiving
the BLE_SEC_EVT_KEY_OOB_REQ_IND message in the callback function

Input parameter: conidx, connection index

accept, whether to accept the request
p_key, 128-bit key value

Output parameter: None

Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure.
2.6.10. ble_sec_nc_cfm

Prototype: ble_status_t ble_sec_nc_cfm(uint8_t conidx, bool accept)

Function: This function is used to reply the results of numeric comparison during pairing
after receiving the BLE_SEC_EVT _NUMERIC_COMPARISON_IND
message in the callback function

Input parameter: conidx, connection index

accept, whether the results of numeric comparison are consistent
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure.
2.6.11. ble_sec_ltk_req_cfm

Prototype: ble_status_t ble_sec_Itk_req_cfm(uint8_t conidx, uint8_t accept,
ble_gap_ltk_t *p_ltk)
Function: This function is used to reply the local LTK information or reject the request

after receivingthe BLE_SEC_EVT_LTK_REQ_IND message in the callback function

55

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.6.12.

2.6.13.

Input parameter: conidx, connection index
accept, whether to accept the request
p_ltk, a pointer to the Itk value
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_ton failure.
ble_sec_irk_req_cfm

Prototype: ble_status_t ble_sec_irk_req_cfm(uint8_t conidx, uint8_t accept,
ble_gap_irk_t *p_irk)
Function: The function is used to reply the local IRK information or reject the request
after receiving the BLE_SEC_EVT_IRK_REQ_IND message in the callback function

Input parameter: conidx, connection index

accept, whether to accept the request

p_irk, a pointer to the irk value
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_ton failure.

ble_sec_csrk_req_cfm

Prototype: ble_status_t ble_sec_csrk_req_cfm(uint8_t conidx, uint8_t accept,
ble gap_csrk_t *p_csrk)
Function: This function is used to reply the local CSRK information or reject the request
after receivingthe BLE_SEC_EVT _CSRK_REQ_IND message in the callback function
Input parameter: conidx, connection index
accept, whether to accept the request
p_csrk, a pointer to the csrk value
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure.

56

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.6.14.

2.6.15.

ble_sec_encrypt_req_cfm

Prototype: ble_status_t ble_sec_encrypt_req_cfm(uint8_t conidx, bool found, uint8_t *p_Itk,
uint8_t key_size)
Function: This function is used to reply the local LTK information or reject the request
during encryption after receiving the BLE_SEC_EVT_ENCRYPT_REQ_IND
message in the callback function
Input parameter: conidx, connection index
found, whether the key exists
p_ltk, a pointer to the local Itk value
key_size, key size
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_ton failure.

ble_sec_pairing_req_cfm

Prototype: ble_status_t ble_sec_pairing_req_cfm(uint8_t conidx, uint8_t accept,
ble gap_pairing_param_t *p_param, uint8_tsec req_IV)
Function: This function is used to reply the pairing response to the peer device for setting
or reject the request after receiving the BLE_SEC_EVT_PAIRING_REQ _IND
message in the callback function
Input parameter: conidx, connection index
accept, whether to accept the request
p_param, the parameter of the pairing response message.
Refer to the structure ble_gap_pairing_param t
sec_req_lewvel, security request level. Refer to the enumble_gap_sec _req t
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure.

57

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.6.16.

2.6.17.

2.7.

ble_sec_oob_data_req_cfm

Prototype: ble_status_t ble_sec _oob_data_req_cfm(uint8_t conidx, uint8_taccept,
uint8_t *p_conf, uint8_t *p_rand)
Function: This function is used to reply the local OOB information or reject the request
during pairing after receiving the BLE_SEC_EVT_OOB_DATA_REQ_IND
message in the callback function.
Input parameter: conidx, connection index
accept, whether to accept the request
p_conf, the peer confirm value
p_rand, the peer random value
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_ton failure.

ble_sec_oob_data_gen

Prototype: ble_status_t ble_sec_oob_data_gen(void)

Function: This function is used to generate a set of OOB data.

Input parameter: None

Output parameter: None

Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After OOB data is successfully generated,
aBLE_SEC_EVT_OOB_DATA_GEN_INFO

message is sent to the callback function

BLE list API

The header file is ble_list.h.

The BLE list module mainly provides interfaces for operating FAL, RAL, and PAL, including
operations such as adding devices to the list, deleting devices from the list, and clearing the
list.

58

°

AN152
GD32VW553 BLE Development Guide

GigaDevice

2.71. List message type
m BLE LIST EVT OP_RSP
This message returns the result of APP calling the function ble_fal_op, ble_fal_list_set,
ble fal list_clear, ble ral_op, ble ral_list set,ble _ral_list_clear, ble_pal_op,ble_pal_list set,
or ble_pal_list_clear to operate the list. The message data type is ble_list_data_t, including
the list type, op type, etc. Determine which list operation the reply is for according to the type
in the data.
B BLE LIST EVT LOC RPA_GET RSP
This message returns the result of APP calling ble_loc_rpa_get to get the local resolvable
address. The message data type is ble_list_data_t; the list type is BLE_RAL_TYPE, and the
optypeis GET _LOC_RPA.
B BLE_LIST EVT PEER RPA GET_RSP
This message returns the result of APP calling ble_peer_rpa_get to get the peer resolvable
address. The message data type is ble_list_data_t; the list type is BLE_RAL_TYPE, and the
op typeis GET_PEER_RPA.

2.7.2. ble_list_callback_register
Prototype: ble_status_t ble_list_callback_register(ble_list evt_handler_t callback)
Function: Register the callback function for processing BLE list messages
Input parameter: callback, a function that processes BLE list messages.

For the description of list messages, see List message type.

Output parameter: None
Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure

2.7.3. ble_list_callback_unregister

Prototype: ble_status_t ble_list callback unregister(ble_list evt_handler_t callback)
Function: Unregister the callback function from BLE list module

Input parameter: callback, callback function to be unregistered

Output parameter: None

Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure

59

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.7.4.

2.7.5.

2.7.6.

ble_fal_op

Prototype: ble_status_t ble_fal_op(ble_gap_addr_t *p_addr_info, bool add)
Function: Add the specified device to or remowe it from the filter accept list
Input parameter: p_addr_info, device address pointer
add, true means to add to FAL, false means to remowve from FAL
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution, a BLE_LIST_EVT_OP_RSP
message is sent to the callback function; list type is BLE_FAL_TYPE,

and op type is RMV_DEVICE_FROM_LIST orADD_DEVICE_TO_LIST

ble_fal_list_set

Prototype: ble_status_t ble_fal_list_set(uint8_t num, ble_gap_addr_t*p_addr_info)
Function: Set the filter accept list. This operation will update the whole FAL to
the specified content
Input parameter: num, the number of devices that need to be set to FAL
p_addr_info, device array, which contains the information of
num addresses

Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_ton failure. After execution,

aBLE_LIST EVT _OP_RSP message is sent to the callback function;

list type is BLE_FAL_TYPE, and op type is SET_DEVICES_TO_LIST

ble_fal_clear

Prototype: ble_status_t ble_fal_clear(void)
Function: Clear the filter accept list
Input parameter: None

Output parameter: None

60

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.7.7.

2.7.8.

2.7.9.

Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execution,
aBLE_LIST EVT_OP_RSP message is sent to the callback function,

list type is BLE_FAL_TYPE, and op type is CLEAR_DEVICE_LIST

ble_fal_size_get

Prototype: uint8_tble fal_size get(wid)

Function: Get the maximum number of elements in the filter accept list
Input parameter: None

Output parameter: None

Return value: The maximum number of elements in the filter accept list

ble_ral_op

Prototype: ble_status_t ble_ral_op(ble_gap_ral_info_t *p_ral_info, bool add)

Function: Add the specified device to or remowe it from the resolving list

Input parameter: p_ral_info, RAL structure pointer, including the identity address, IRK, etc.

add, true means to add to RAL, false means toremove from RAL

Output parameter: None

Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execution,
aBLE_LIST_EVT_OP_RSP message is sent to the callback function;
list type is BLE_RAL_TYPE, and op type is

RMV_DEVICE_FROM_LISTorADD_DEVICE_TO_LIST

ble_ral_list_set

Prototype: ble_status_t ble_ral_list set(uint8 tnum, ble_gap ral info_t *p_ral_info)
Function: Set the resolving list. This operation will update the whole RAL to

the specified content
Input parameter: num, the number of devices that need to be set to RAL

p_ral_info, RAL structure array, which contains num RAL structures

61

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.7.10.

2.711.

2.712.

Output parameter: None

Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execdution,
aBLE_LIST EVT _OP_RSP message is sent to the callback function;

list type is BLE_RAL_TYPE, and op type is SET_DEVICES_TO_LIST

ble_ral_clear

Prototype: ble_status_t ble ral_clear(void)
Function: Clear the resolving list
Input parameter: None
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execution,
aBLE_LIST EVT_OP_RSP message is sent to the callback function;

list type is BLE_RAL_TYPE, and op type is CLEAR_DEVICE_LIST

ble_ral_size_get

Prototype: uint8 tble ral_size get(void)

Function: Get the maximum number of elements in the resolving list
Input parameter: None

Output parameter: None

Return value: The maximum number of elements in the resolving list

ble_loc_rpa_get

Prototype: ble_status_t ble_loc_rpa_get(uint8_t*p_peer_id, uint8_tpeer_id_type)
Function: Get the local resolvable private address currently used for the specified device
Input parameter: p_peer_id, the identity address of the specified device

peer_id_type, the identity address type of the specified device
Output parameter: None

Return value: Return 0 on successful execution, and return the error code

62

e AN152

GigaDevice GD32VW553 BLE Development Guide

defined in ble_status_ton failure. After execution,

aBLE_LIST EVT _LOC_RPA_GET RSP message is sent to

the callback function.

2.713. ble_peer_rpa_get

Prototype: ble_status_t ble_peer rpa_get(uint8_t*p_peer _id, uint8_tpeer id type)
Function: Get the resolvable private address currently used for the specified device
Input parameter: p_peer_id, the identity address of the specified device
peer_id_type, the identity address type of the specified device

Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_ton failure. After execution,

aBLE_LIST EVT_PEER_RPA GET_RSP message is sent to

the callback function

2.714. ble_pal_op

Prototype: ble_status_t ble_pal_op(ble_gap_pal_info_t *p_pal_info, bool add)
Function: Add the specified device to or remowe it from the periodic advertising list
Input parameter: p_pal_info, PAL structure pointer, including the address, SID, etc.
add, true means to add to PAL, false means to remove from PAL
Output parameter: None
Return value: Return 0 on successful execution, and return the error code
defined in ble_status_t on failure. After execution, a BLE_LIST_EVT_OP_RSP
message is sent to the callback function; list type is BLE_PAL_TYPE,

and op type is RMV_DEVICE_FROM LIST orADD_DEVICE_TO_LIST

2.715. ble_pal_list_set

Prototype: ble_status_t ble_pal_list_set(uint8_tnum, ble_gap_pal_info_t *p_pal_info)
Function: Set the periodic advertising list. This operation will update the whole PAL to

the specified content

63

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.7.16.

2.717.

2.8.

Input parameter: num, the number of devices that need to be set to PAL
p_ral_info, PAL structure array, which contains num PAL structures
Output parameter: None
Return value: Return 0 on successful execution, and return the error code defined
in ble_status_t on failure. After execution,
aBLE_LIST_EVT_OP_RSP message is sent to the callback function;

list type is BLE_PAL_TYPE, and op type is SET_DEVICES_TO_LIST

ble_pal_clear

Prototype: ble_status_t ble_pal_clear(void)

Function: Clear the periodic advertising list

Input parameter: None

Output parameter: None

Return value: Return 0 on successful execution, and return the error code
defined in ble_status_ton failure. After execdution,
aBLE_LIST_EVT_OP_RSP message is sent to the callback function;

list type is BLE_PAL_TYPE, and op type is CLEAR_DEVICE_LIST

ble_pal_size_get

Prototype: uint8_tble_pal_size get(void)

Function: Get the maximum number of elements in the periodic advertising list
Input parameter: None

Output parameter: None

Return value: The maximum number of elements in the periodic advertising list

BLE periodic sync API

The header file is ble_per_sync.h.

The BLE periodic sync module mainly provides interfaces for synchronizing periodic
adwertising, reporting received periodic advertising data, etc.

64

°

AN152
GD32VW553 BLE Development Guide

GigaDevice

2.8.1. Periodic sync message type
APP canregistera callback function with the BLE periodic sync module, and the BLE protocal
stack will send the following event message to APP through the callback function.
B BLE PER SYNC EVT START RSP
This message is a response to APP calling ble_per_sync_start to start periodic sync. The
message data type is ble_per_sync_start_rsp_t, including the status of starting periodic sync.
B BLE_PER SYNC_EVT_CANCEL_RSP
This message is a response to APP calling ble_per_sync_cancel to cancel periodic sync. The
message data type is ble_per_sync_cancel_rsp _t, including the status of cancelling periodic
sync.
B BLE_PER _SYNC_EVT_TERMINATE_RSP
This message is a response to APP calling ble_per_sync_terminate to terminate a periodic
sync train. The message data type is ble_per_sync_terminate_rsp_t, including the status of
terminating periodic sync train.
B BLE PER SYNC EVT STATE_CHG
This message is sent to the callback function when the periodic sync state changes. The
message data type is ble_per_sync_state_chg_t, including the new state and the reason for
change.
B BLE PER SYNC EVT REPORT
This message is sent to the callback function after the periodic advertising report is receiwed.
The message data type is ble_gap_adv report_info_t, including the device address for
sending periodic advertising, the sent PHY, advertising data, etc.
B BLE PER SYNC _EVT ESTABLISHED
This message is sent to the callback function after the periodic advertising is synchronized.
The message data type is ble_per sync_established t, including the the PHY of
synchronized periodic advertising, interval, SID, etc.
B BLE PER SYNC EVT RPT_CTRL_RSP
This message returns the result of APP calling ble_per_sync_report_ctrl to set the report
content. The message data type is ble_per_sync_rpt _ctrl_rsp_t, including the set status.

2.8.2. ble_per_sync_callback_register

Prototype: ble_status_t ble_per_sync_callback_register(

ble_per_sync_evt_handler_t callback)

65

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.8.3.

2.8.4.

2.8.5.

Function: Register the callback function that processes periodic sync messages.

For the description of per sync messages, see Periodic sync message type.
Input parameter: callback, callback function that processes periodic sync messages
Output parameter: None

Returnvalue: Return 0 on success, and return the error code definedin ble_status_t onfailure

ble_per_sync_callback_unregister

Prototype: ble_status_t ble_per_sync_callback_unregister(
ble_per_sync_evt_handler_t callback)
Function: Unregister the callback function from BLE periodic sync module
Input parameter: callback, callback function to be unregistered
Output parameter: None

Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure

ble_per_sync_start

Prototype: ble_status_t ble_per_sync_start (ble_gap_local_addr_type_t own_addr_type,
ble gap_per _sync_param _t *p_param)
Function: Start periodic sync
Input parameter: own_addr_type, the local address type used in the sync process
p_param, periodic sync parameter structure pointer
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status_tonfailure.

Aftercallingthis APl,aBLE_PER_SYNC_EVT_START_RSP will be senttothe
callback function to notify if execution is successful. If so, a
BLE _PER _SYNC_EVT STATE_CHG message is also sent. If successfully
synchronized, a BLE_ PER_SYNC_EVT_ESTABLISHED message is also sent
andaBLE_PER_SYNC_EVT_REPORT messageis senttoreport the received
data

ble_per_sync_cancel

Prototype: ble_status_t ble_per_sync_cancel (wid)

Function: Cancel the ongoing periodic sync process
66

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.8.6.

2.8.7.

2.9.

Input parameter: None
Output parameter: None
Return value: Return 0 on success, and return the error code definedin ble_status_ton failure.

After calling this API, a BLE_PER_SYNC_EVT_CANCEL_RSP will be sent to
the callback function to notify if execution is successful. If so, a
BLE_PER_SYNC_EVT_STATE_CHG message is also sent

ble_per_sync_terminate

Prototype: ble_status_t ble_per_sync_terminate (uint8_t sync_idx)

Function: Abort the periodic sync train that has been successfully synchronized

Input parameter: sync_idx, sync index

Output parameter: None

Returnvalue: Return 0 on success, and return the error code definedin ble_status_tonfailure.

Atfter calling thisAPI, a BLE_PER_SYNC_EVT_TERMINATE_RSP will be sent
to the callback function to notify if execution is successful. If so, a
BLE_PER_SYNC_EVT_STATE_CHG message is also sent

ble_per_sync_report_ctrl

Prototype: ble_status_t ble_per_sync_report_ctrl(uint8_t sync_idx, uint8_t ctrl)
Function: Modify the content of notification reported after successful synchronization
Input parameter: sync_idx, sync index
ctrl, periodic sync report control bit, which is composed of bits in
ble _per _sync_rpt_ctrl_bit_t
Output parameter: None
Returnvalue: Return 0 on success, and returnthe error code defined in ble_status_tonfailure
After the setting, a BLE_PER_SYNC_EVT_RPT_CTRL_RSP

message is sent to the callback function

BLE storage API

The header file is ble_storage.h. The module uses flash to store and manage the bond
information of the peer device, including peer_irk, peer_ltk, peer_csrk, local_irk, local_ltk,
local_csrk, etc.

67

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.9.1.

2.9.2,

The macrodefinition BLE_ PEER_NUM_MAXinthe headerfile is used to define the maximum
number of peer devices. When the number of peer devices stored has reached the upper limit
while new peer information needs to be stored, use the LRU algorithm to delete the oldest
peer information that has not been used.

ble_peer_data_bond_store

Prototype: ble_status_t ble_peer_data bond_store(ble_gap addr_t *addr,
ble gap_sec _bond_data t*bond_data)
Function: The function is used to store the bond information of the peer device,
which will also be saved in flash. If the bond information with the same index
already exists, it will be updated and sawed. If keys_user_mgr is false during
BLE adapter config, the BLE security will automatically store the bond information,
and APP does not need to perform related operations.

Input parameter: addr, the address of the connected device. If bond_data does not contain
identity addr, the address will be stored as an index. If bond_data
contains identity addr, identity addr will be stored as an index, and
this address will not work; howevwer, it cannot be empty

bond_data: the bond information needs to store
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure.

ble_peer_data_bond_load

Prototype: ble_status_t ble_peer_data_bond load(ble_gap_addr_t *addr,
ble_gap _sec bond_data_t*bond_data)
Function: The function is used to get bond information
Input parameter: addr, which can be identity addr or RPA, with the address as an index to
get information
Output parameter: bond_data, the obtained bond information
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_t on failure.

68

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.9.3.

2.94.

2.9.5.

ble_peer_data_delete

Prototype: ble_status_t ble_peer_data_delete(ble_gap_addr_t *addr)
Function: The function is used to delete the peer information corresponding to
the specified addr, and the content in flash will also be deleted.
Input parameter: addr, which can be identity addr or RPA, with the address as an index
to delete the peerinformation
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_ton failure.

ble_peer_all_addr_get

Prototype: ble_status_t ble_peer_all addr_get(uint8 t*num, ble_gap_addr _t *id_addrs)
Function: The function is used to get the identity addr of all peer devices under
the storage module
Input parameter: num, the num pointer value indicates the maximum number of peer
devices that need to be obtained, which cannot
exceed BLE_PEER_NUM_MAXand determines the memory size of
the id_addrs pointer to be num*sizeof(ble _gap_addr t)
Output parameter: num, whose value is the actual number obtained
id_addrs, the id_addrs pointer stores the actually obtained peer identity
addr
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_ton failure.

ble_svc_data_save

Prototype: ble_status_t ble_swvc_data_save(uint8_t conn_idx, uint16_tdata_id, uint32_tlen,
uint8_t *p_data)
Function: The function is provided to the upper-layer BLE senvice to store data related to the

senvice of the connected device to the flash.

69

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.9.6.

2.10.

2.10.1.

Input parameter: conn_idx, BLE connection index, which can be obtained in
the connection success message
data_id, identifies service information and is defined by the upper-layer APP
len, length of p_data
p_data, store senvice information pointer
Output parameter: None
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_ton failure.

ble_svc_data_load

Prototype: ble_status_tble_svc_data load(uint8_t conn_idx, uint16_tdata_id, void **pp_data,
uint32_t *p_len)
Function: The function is provided to the upper-layer BLE service to obtain data about the
senice stored in the flash on the connected device.
Input parameter: conn_idx, BLE connection index, which can be obtained in
the connection success message
data_id, identifies service information and is defined by the upper-layer APP
Output parameter: pp_data, the obtained senice information pointer
p_len, length of pp_data
Return value: Return 0 on successful execution, and return the error code

defined in ble_status_ton failure.

BLE gatts API

The header file is ble_gatts.h.

The BLE GATT server module mainly provides interfaces for registering/deleting GATT
senice, sending notification/indication to the client, etc.

gatts message type

BLE senvices can register a callback function with the BLE GATT server module, and the BLE
GATT server module will send the following event messages to BLE senices through the
callback function.

70

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

m BLE_SRV_EVT SVC _ADD RSP

This message returns the result of calling the ble_gatts svc_add function to add a service to
the GATT server module. The message data type is ble_gatts_svc_add_rsp_t, including the
status of the added seniice. Ifthe status is 0, it also contains the assigned senice ID and the
start handle value of the senice in the database.

m BLE_SRV_EVT SVC_RMV_RSP

This message returns the result of calling the ble_gatts_swc_rmvfunctiontoremowve a senice
from the GATT server module. The message data type is ble_gatts svc_rmv_rsp_t, including
the status of the remowved senice and the senvice ID.

m BLE_SRV_EVT CONN_STATE_CHANGE_IND

This message is sent to the callback function when the device connection state changes. The
message data type is ble_gatts_conn_state_change_ind_t, including the connection status.
If the connection state is connected, the connection index and address information ofthe peer

device will be included; If the connection state is disconnected, the reason for disconnection
will also be included.

m BLE_SRV_EVT GATT OPERATION

This message is sent to the callback function when interacting with the peer GATT client. The
message data type is ble_gatts_op_info_t, including the subevent, connection index of
interacted connection, and message data of different subevents . The message includes the
following subevents:

e BLE_SRV_EVT READ REQ

When the peer client initiates the attribute read request, this subevent will be notified
to the callback function. The corresponding data type is ble_gatts_read_req t,
including the attribute index to be read, and the offset and the maximum length of
the attribute value. At the same time, the message also contains pending_cfm flag,
through which the upper layer can determine whether to directly reply to the peer
client with the read result through the GATT server module after the message is
process by the callback function. If required, copy the data to the pre-allocated
location (the maximum length) of the server module; otherwise, set pending_cfim to
true, and call ble_gatts_svc_attr read cfm to reply as required.

e BLE_SRV_EVT WRITE_REQ

When the peer client initiates the attribute write request, this subevent will notify the
callback function by using the data type of ble_gatts_write_req_t, including the
attribute index to be written, and the offset, length, and content of the written data.
There is a local_req parameterin the messag data whichindicates whetherthe write
regest is triggered by local (by calling ble_gatts_set attr_val) or remote device, if
triggered by local, there is no need to confirm. The message also contains
pending_cfm flag, through which the upper layer can determine whether to directly

71

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.10.2.

reply with the write result through the GATT server module after the message is
process by the callback function. If not required, set pending_cfm to true, and call
ble_gatts_swvc_attr_write_cfm to reply as required.

® BLE_SRV_EVT NTF_IND_SEND RSP

This subevent returns the result of calling ble gatts ntf ind send or
ble_gatts_ntf ind_send_by handle to send a GATT noatification or indication. The
subevent data type is ble_gatts_nif ind_send_rsp t, including the status of the sent
data, senvice id, and attribute index.

® BLE_SRV_EVT NTF_IND_MTP_SEND RSP

This subevent returns the result of calling ble_gatts_ntf ind_mtp_send to send
notifications or indications to multiple remote devices. The message data type is
ble_gatts_ntf_ind_mtp_send_rsp_t, including the status of the sent data, senvice id,
and attribute index.

e BLE_SRV_EVT MTU_INFO

When GATT MTU changes, this subevent will notify the callback function by using
the data type of ble_gatts_mtu_info_t, including the new MTU to be used.

ble_gatts_svc_add

Prototype: ble_status_t ble_gatts_svc_add(uint8_t*p_swvc_id, const uint8_t *uuid,
uint16_tstart_hdl, uint8_t info, const wid *p_table, uint16_t table_length,
p_fun_srv_cb srv_cb)
Function: Add a senice to the GATT server module.
Input parameter: uuid, service UUID address
start_hdl, senice start attribute handle value; 0 means that the handle is not
specified and is automatically assigned by the module
info, senice information. For details, see ble_gatt svc_info_bf
p_table, all attribute arrays of the senvice; each attribute
structure is ble_gatt attr desc t
table_length, the length of senice attribute array
srv_cb, the message handler function of GATT server. For the message

type, see gatts message type

Output parameter: p_svc_id, the ID assigned by the BLE GATT server module to the service

Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure
72

e AN152

GigaDevice GD32VW553 BLE Development Guide

After execution, a BLE_PRF_MGR_EVT _SVC_ADD RSP

message is sent to the callback function

2.10.3. ble_gatts_svc_rmv

Prototype: ble_status_t ble_gatts_svc_rmv(uint8_t svc_id)

Function: remove a senice

Input parameter: svc_id, the ID assigned to the senice when ble_gatts svc_add is called

Output parameter: None

Returnvalue: Return 0 on success, and return the error code definedin ble_status_ton failure
After execution, a BLE_SRV_EVT_SVC_RMV_RSP

message is sent to the callback function

2.10.4. ble_gatts_ntf_ind_send

Prototype: ble_status_t ble_gatts_ntf_ind_send (uint8_t conn_idx, uint8_t svc_id,
uint16_t att_idx, uint8_t*p_val, uint16_t len, ble_gatt_evt_type _t evt_type)
Function: Send a notification/indication
Input parameter: conn_idx, connection index
svc_id, the ID assigned to the senvice when ble_gatts_svc_add is called
att_idx, the index value of the attribute in the array when
ble_gatts_swc_addis called
p_val, the address of data to be sent
len, the length of data to be sent
evt_type, whether the type of data sent this time is notification or indication
Output parameter: None
Return value: Return 0 on success, and return the error code definedin ble_status_ton failure
After execution, a BLE_ SRV_EVT GATT _OPERATION
message with a subevent of BLE_SRV_EVT_NTF_IND_SEND_RSP is

sent to the callback function

73

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.10.5.

2.10.6.

ble_gatts_ntf_ind_send_by handle

Prototype: ble_status_t ble_gatts_ntf ind_send_by handle(uint8_t conn_idx,
uint16_t handle, uint8 t *p_val, uint16_t len, ble_gatt ewvt_type tewvt_ type)
Function: Send a notification/indication through the attribute handle
Input parameter: conn_idx, connection index
handle, the handle value of the attribute, which can be obtained through
the index of the attribute in the array and the start handle of
the senice when ble_gatts_swvc_add is called
p_val, the address of data to be sent
len, the length of data to be sent
evt_type, whether the type of data sent this time is notification or indication
Output parameter: None
Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure
After execution, aBLE_SRV_EVT _GATT_OPERATION
message with the subevent of BLE_SRV_EVT _NTF_IND_SEND_RSP

is sent to the callback function

ble_gatts_ntf_ind_mtp_send

Prototype: ble_status_t ble _gatts ntf ind_mtp_send (uint32_t conidx_bf, uint8_t svc_id,
uint16_t att_idx, uint8_t*p_val, uint16_t len, ble_gatt evt_type tewvt_type)
Function: Send a notification/indication to multiple connections
Input parameter: conidx_bf, connection index bit combination, bit O represents
connection index 0x00, bit 1 represents connection index 0x01, and so on
svc_id, the ID assigned to the sernvice when ble_gatts_svc_add is called
att_idx, the index value of the attribute in the array when
ble_gatts_swc_add s called
p_val, the address of data to be sent
len, the length of data to be sent
evt_type, whether the type of data sent this time is notification or indication

74

°

AN152
GD32VW553 BLE Development Guide

GigaDevice
Output parameter: None
Return value: Return 0 on success, and return the error code definedin ble_status_ton failure
After execution, aBLE_SRV_EVT_GATT_OPERATION
message with the subevent of BLE_SRV_EVT_NTF_IND_MTP_SEND_RSP
is sent to the callback function
2.10.7. ble_gatts_mtu_get
Prototype: ble_status_t ble_gatts_mtu_get(uint8_t conidx, uint16_t *p_mtu)
Function: Obtain GATT MTU of the connection.
Input parameter: conn_idx, connection index
Output parameter: p_mtu, obtained GATT MTU of the connection
Returnvalue: Return 0 on success, and return the error code defined in ble_status_tonfailure
2.10.8. ble_gatts_svc_attr_write_cfm
Prototype: ble_status_t ble_gatts_svc_attr_write_cfm(uint8_t conn_idx, uint16_t token,
uint16_t status)
Function: When receiving BLE_SRV_EVT_GATT_OPERATION and the subevent
is BLE_SRV_EVT_WRITE_REQ and local_req parameter is false in the message
data, if automatic reply by GATT server module isnot needed, pending_cfm in
the message data should be sent totrue, thenble_gatts_swvc_attr_write_cfm should
be called by user to confirm the write request according to user requirement.
Input parameter: conn_idx, connection index
token, GATT token, which is obtained in the
BLE_SRV_EVT WRITE_REQ message
status, a status of replying to the write request
Output parameter: None
Returnvalue: Return 0 on success, and returnthe error code defined in ble_status_tonfailure
2.10.9. ble_gatts_svc_attr_read_cfm

Prototype: ble_status_t ble_gatts_svc_attr_read_cfm(uint8_t conn_idx, uint16_ttoken,

75

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.10.10.

2.10.11.

uint16_t status, uint16_ttotal_len,uint16_tvalue_len, uint8_t *p_value)
Function: When receiving BLE_ SRV_EVT_GATT_OPERATION and the subevent
is BLE_SRV_EVT_READ_REQ, if automatic reply by GATT server module
is not needed, pending_cfm in the message data should be sent to true,
then ble_gatts_swvc_attr_read_cfm should be called by user to confirm
the read request according to user requirement.
Input parameter: conn_idx, connection index
token, GATT token, which is obtained in the
BLE_SRV_EVT _READ_REQ message
status, a status of replying to the read request
total_len, the total length of attribute to be read
value_len, the attribute data length replied with to the read request
p_value, the attribute data content replied with to the read request
Output parameter: None

Return value: Return 0 on success, and return the errorcode definedin ble_status_tonfailure

ble_gatts_get_start_hdl

Prototype: ble_status_t ble_gatts get start_hdl(uint8 tswvc_id, uint16_t*p_handle)
Function: Obtain the start handle value allocated by the GATT server module to the senrvice.
Input parameter: svc_id, senice id, which is obtained in ble_gatts_swc_add

Output parameter: p_handle, obtained start handle value

Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure

ble_gatts_set_attr_val

Prototype: ble_status_t ble_gatts_set_attr_val(uint8_t conn_idx, uint8_tswvc_id,
uint8_t char_idx, uint16_t len, uint8_t *p_value)
Function: Set attribute value in GATT server database.
Input parameter: conn_idx, connection index
svc_id, senvice id, which is obtained in ble_gatts svc_add

char_idx, characteristic index in the service attribute table

76

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.10.12.

2.10.13.

2.10.14.

len, attribute value length
p_value, pointer to attribute value data to be set
Output parameter: None
Return value: Return 0 on success, and returnthe error code definedin ble_status_tonfailure
After calling this API, a BLE_SRV_EVT_GATT_OPERATION message with
subevent BLE_SRV_EVT_WRITE_REQ will be used to notify the

corresponding senice, and local_req parameter in the message datais true.

ble_gatts_list_svc

Prototype: ble_status_t ble_gatts_list_svc(p_fun_svc_list_cb cb)

Function: Get all the senice information registered in the GATT server module.
Input parameter: cb, callback function to handle senvice information

Output parameter: None

Return value: Return 0 on success, and return the error code definedin ble_status_ton failure

ble_gatts_list_char

Prototype: ble_status_t ble_gatts list char(uint8_tswvc_id, p_fun_char _list_cb cb)
Function: Get all the characteristic information in the specified senvice.
Input parameter: svc_id, senice id, which is obtained in ble_gatts swc_add
cb, callback function to handle characteristic information
Output parameter: None

Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure

ble_gatts_list_desc

Prototype: ble_status_t ble_gatts_list_desc(uint8_t svc_id, uint16_t char_val_idx,
p_fun_desc_list_cbcb)
Function: Get specified characteristic descriptor information.
Input parameter: svc_id, senice id, which is obtained in ble_gatts_swc_add
char_val_idx, characteristic value index in the senice table

cb, callback function to handle characteristic descriptor information

77

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.11.

211.1.

Output parameter: None

Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure

BLE gattc API

The header file is ble_gattc.h.

The BLE GATT client module mainly provides the following functions: GATT discovery; read
and write attribute value from the peer GATT senwer, etc.

gattc message type

BLE senvices can register a callback function to the BLE GATT client module, which will send
the following event messages to BLE senices through the callback function.

m BLE_CLI_EVT_CONN_STATE_CHANGE_IND

This message is sent to the callback function when the device connection state changes. The
message data type is ble_gattc_conn_state_change_ind_t, including the connection state
conn_state. If the connection state is connected, the connection index and address
information of the peer device will be included; howewer, if the connection state is
disconnected, the reason for disconnection will also be included.

m BLE_CLI_EVT GATT OPERATION

This message is sent to the callback function when interacting with the peer GATT server.
The message data type is ble_gattc_op_info_t, including the subevent gattc_op_sub_ewt of
GATT client operation, connection index conn_idx, and message data of different subevents.
The message includes the following subevents:

® BLE_CLI_EVT SVC_DISC_DONE_RSP

After ble_gattc_start discovery is called to discover senices of the peer GATT
senver, this subevent returns whether the registered senice is found. The subevent
data type is ble_gattc_swvc_dis_done_t, including whether the senice is found and
the number of instances.

® BLE_CLI_EVT READ RSP

This subevent returns the result of reading the data of peer GATT server attribute
by calling ble gattc read. The subevent data type is ble gattc read rspt,
including senvice uuid and characteristic uuid.

® BLE_CLI_EVT WRITE_RSP

This subevent returns the result of writing data to the peer GATT server by calling
ble_gattc_write_req, ble_gattc_write_cmd, or ble_gattc_write_signed. The
subevent data type is ble_gattc_write_rsp_t, including senice uuid and

78

°

AN152
GD32VW553 BLE Development Guide

GigaDevice
characteristic uuid.
® BLE CLI EVT NTF_IND RCV
When the peer GATT server sends notification or indication, this subevent is sent to
the registered callback function. The subevent data type is ble_gattc_ntf ind t,
including senvice uuid, characteristic uuid, and attribute handle.
® BLE CLI EVT MTU _UPDATE_RSP
This subevent returns the result of updating GATT MTU by calling
ble gattc_mtu update. The subevent data type is ble_gattc_mtu _update rsp t,
including the status of updating MTU.
® BLE CLILEVT MTU_INFO
When GATT MTU changes, this subevent will notify the callback function by using
subevent data type ble_gattc_mtu_info_t which includes the new MTU to be used.
2.11.2. ble_gattc_start_discovery
Prototype: ble_status_t ble_gattc_start_discovery(uint8_t conn_idx,
p_discovery _done_cb callback)
Function: Start to discover senvices in the peer GATT senver.
Input parameter: conn_idx, connection index
callback, discovery complete callback function
Output parameter: None
Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure
2.11.3. ble_gattc_svc_reg

Prototype: ble_status_t ble_gattc_svc_reg(ble_uuid_t *p_svc_uuid, p_fun_cli_cb p_cb)
Function: Register the callback function and senice UUID to the BLE GATT client module.
Input parameter: p_svc_uuid, senice uuid client pays attention to

p_cb, the message handler function of GATT client. For the message type,

see gattc message type.

Output parameter: None

Return value: Return 0 on success, and return the error code definedin ble_status_ton failure

79

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.11.4.

2.11.5.

2.11.6.

ble_gattc_svc_unreg

Prototype: ble_status_t ble_gattc_svc_unreg(ble_uuid_t *p_svc_uuid)

Function: Unregister the callback function and senvice UUID from BLE GATT client module
Input parameter: p_svc_uuid, senice uuid to be unregistered

Output parameter: None

Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure

ble_gattc_read

Prototype: ble_status_t ble_gattc_read(uint8_t conidx, uint16_t hdl, uint16_t offset,
uint16_t length)
Function: Read the attribute data of the peer GATT senrver.
Input parameter: conidx, connection index
hdl, attribute handle
offset, data offset to be read
length, data length to be read
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status ton
failure After execution, the BLE_CLI_ EVT_GATT_OPERATION
message with a subevent of BLE_CLI_EVT_READ_RSP

will be sent to the registered callback function.

ble_gattc_write_req

Prototype: ble_status_t ble gattc_write_req(uint8_t conidx, uint16_thdl, uint16_t length,
uint8_t *p_value)
Function: Write data to peer server (write request)
Input parameter: conidx, connection index
hdl, attribute handle
length, data length to be written

p_value, data to be written

80

°

AN152
GD32VW553 BLE Development Guide

GigaDevice
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status t on
failure After execution, the BLE_CLI_EVT_GATT_OPERATION
message with a subevent of BLE_CLI EVT_WRITE_RSP
will be sent to the callback function.
211.7. ble_gattc_write_cmd
Prototype: ble_status_t ble_gattc_write_cmd(uint8_t conidx, uint16_t hdl, uint16_t length,
uint8_t *p_value)
Function: Write data to peer server (write command)
Input parameter: conidx, connection index
hdl, attribute handle
length, data length to be written
p_value, data to be written
Output parameter: None
Return value: Return 0 on success, and return the error code defined in ble_status t on
failure After execution, the BLE_CLI_EVT GATT_OPERATION
message with a subevent of BLE_CLI_ EVT_WRITE_RSP
will be sent to the registered callback function.
2.11.8. ble_gattc_write_signed

Prototype: ble_status_t ble_gattc write_signed(uint8 t conidx, uint16_t hdl, uint16_t length,
uint8_t *p_value)
Function: Write data to peer server (write signed)
Input parameter: conidx, connection index
hdl, attribute handle
length, data length to be written
p_value, data to be written
Output parameter: None

Return value: Return 0 on success, and return the error code defined in ble_status_t on

81

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.11.9.

2.11.10.

2.11.11.

failure After execution, the BLE_CLI_ EVT_GATT_OPERATION
message with a subevent of BLE_CLI_ EVT_WRITE_RSP

will be sent to the registered callback function.

ble_gattc_mtu_update

Prototype: ble_status_t ble_gattc_ mtu_update(uint8_t conidx, uint16_t mtu_size)

Function: Update GATT mtu.

Input parameter: conidx, connection index

mtu_size, preferred mtu to update, 0 means let stack choose

Output parameter: None

Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure
After calling the API, a BLE_CLI_EVT_GATT_OPERATION message with
subevent BLE_CLI EVT _MTU_UPDATE_RSP will notify the callback function
whether the updating executes successful. If so, aBLE_CLI EVT_MTU_INFO

message will also notify callback function after update procedure complete.

ble_gattc_mtu_get

Prototype: ble_status_t ble_status_t ble_gattc_mtu_get(uint8_t conidx, uint16_t *p_mtu)
Function: Obtain the GATT mtu value of the connection.

Input parameter: conidx, connection index

Output parameter: p_mtu, mtu size

Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure

ble_gattc_find_char_handle

Prototype: ble_status_t ble_gattc_find_char_handle(uint8_t conn_idx, ble_gattc_uuid_info_t
*svc_uuid, ble_gattc_uuid info_t *char_uuid, uint16_t *handle)
Function: Find the value handle value of the characteristic.
Input parameter: conidx, connection index
SVC_uuid, senvice uuid

char_uuid, characteristic uuid

82

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.11.12.

2.12.

2.12.1.

2.12.2.

Output parameter: handle, attribute handle value

Returnvalue: Return 0 on success, and returnthe error code definedin ble_status_tonfailure

ble_gattc_find_desc_handle

Prototype: ble_status_t ble_gattc_find_desc_handle(uint8_t conn_idx, ble_gattc_uuid_info_t
*svc_uuid, ble_gattc_uuid_info_t *char_uuid,
ble_gattc_uuid_info_t *desc_uuid, uint16_t *handle)
Function: Find the handle value of description.
Input parameter: conidx, connection index
svc_uuid, senice uuid
char_uuid, characteristic uuid
desc_uuid, description uuid
Output parameter: handle, attribute handle value

Return value: Return 0 on success, and return the error code definedin ble_status_ton failure
BLE export API

The header file is ble_export.h.
The file contains the initialization and free of the BLE stack, functions to send messages to

BLE APP task and register message callback function etc.

ble_sw_init

Prototype: ble_status_t ble_sw_init(ble_init_param_t *p_param)

Function: Initialize the BLE stack.

Input parameter: p_param , pointer to init parameters, including role, BLE task priority and
stack size, BLE APP task priority and stack size etc.

Output parameter: None

Returnvalue: Return 0 on success, and return the error code defined in ble_status_tonfailure

ble_sw_deinit

Prototype: ble_status_t ble_sw_deinit(woid)

Function: Deinit the BLE stack and release related resources.

83

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.12.3.

2.12.4.

2.12.5.

Input parameter: None.
Output parameter: None

Return value: Return 0 on success, and return the error code definedin ble_status_tonfailure.

ble_stack_task_resume

Prototype: void ble_stack_task_resume(bool isr)

Function: Resume the BLE stack task. If BLE task is in the sleep mode, this function can
be called by an external interrupt to wake up the BLE task.

Input parameter: isr, which indicates whether it is called by an interrupt

Output parameter: None

Return value: None

ble_local_app_msg_send

Prototype: bool ble_local_app_msg_send (wid *p_msg, uint16_tmsg_len)

Function: If the upper layer determines to handle the message asynchronously, it can
send a message to the BLE APP task, specifying that the message should be
handled in the callback function. In this case, ble_app_msg_hdl_reg should
be called to register the callback function in advance.

Input parameter: p_msg, message content

msg_len, the length of message content
Output parameter: None

Return value: Return "true" upon success and "false" upon failure.
ble_app_msg_hdl_reg

Prototype: void ble_app_msg_hdl_reg(ble_app_msg_hdl_t p_hdl)

Function: Work together with ble local_app _msg_send to register the callback function
for APP message.

Input parameter: p_hdl, callback function

Output parameter: None

Return value: None

84

°

AN152
GD32VW553 BLE Development Guide

GigaDevice

2.12.6. ble_sleep_mode_set
Prototype: void ble_sleep_mode_set(uint8 t mode)
Function: Set the BLE sleep mode.
Input parameter: mode: 0 means normal mode, while 1 means sleep mode. (If there are

no task to deal with, the task and BLE core are in the sleep mode)

Output parameter: None
Return value: None

212.7. ble_sleep_mode_get
Prototype: uint8_tble_sleep_mode_get(void)
Function: Get the BLE sleep mode.
Input parameter: None
Output parameter: None
Return value: mode: 0 means normal mode, while 1 means sleep mode. (If there are no

tasks, thetask and BLE core are in the sleep mode)

2.12.8. ble_core_is_deep_sleep
Prototype: bool ble_core_is_deep_sleep(void)
Function: Query whether BLE core is in the deep sleep mode.
Input parameter: None
Output parameter: None
Return value: true for the deep sleep mode and false for other modes

2.12.9. ble_modem_config

Prototype: void ble_modem_config(void)

Function: Configure the modem parameter under BLE core every time it is woken up from
the sleep mode.

Input parameter: None

Output parameter: None

Return value: None

85

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

2.12.10.

2.12.11.

2.12.12.

ble_ work_status_get

Prototype: ble_work_status_tble work_status_get(void)
Function: Get the BLE working status.

Input parameter: None

Output parameter: None

Return value: mode: 0 means enable, while 1 means disable.

ble_internal_encode

Prototype: wvoid ble_internal_encode(uint8_t *data, uint16_tlen, uint8_t rand)
Function: Encode the data by using the internal algorithm.
Input parameter: data, input data
len, the length of input data
rand, random number, through which different values can be output from
the same input
Output parameter: data, encoded data

Return value: None

ble_internal_decode

Prototype: wvoid ble_internal_decode(uint8_t *data, uint16_tlen, uint8_t rand)
Function: Decode the data by using the internal algorithm.
Input parameter: data, input data
len, the length of input data
rand, random number, through which different values can be output from
the same input
Output parameter: data, decoded data

Return value: None

86

°

AN152
GD32VW553 BLE Development Guide

GigaDevice
3. Application examples
3.1. Scan

The BLE scan function is used to find Bluetooth low energy devices in the surrounding
environment. Enabling the scan function will report the scanned devices to the application
layer.

Quickly use the function in the following steps:
1. Register an event handler to handle changes in scan status and report advertising data.

Table 3-1. Example code of scan event handler

static void ble_app_scan_mgr_evt_handler(ble_scan_evt_t event, ble_scan_data_u *p_data)
{
switch (event) {
case BLE_ SCAN_EVT_STATE_CHG:
if (p_data->scan_state.scan_state == BLE_ SCAN_STATE _ENABLED) ({
dbg_print(NOTICE, "Ble Scan enabled status 0x%x\r\n", p_data->scan_state.reason);
} else if (p_data->scan_state.scan_state == BLE_SCAN_STATE_ENABLING) ({
scan_mgr_clear_dev_list();
} else if (p_data->scan_state.scan_state == BLE_SCAN_STATE_DISABLED) {
dbg_print(NOTICE, "Ble Scan disabled status 0x %x\r\n",
p_data->scan_state.reason);

}

break;

case BLE_ SCAN_EVT_ADV_RPT:
scan_mgr_report_hdIr(p_data->p_adv_rpt);

break;

}

2. Configure scan parameters through ble_scan_param_set. The structure parameters are
as follows:

type-—-scan type, which can be set to general discovery (general scan), limit discovery (limit
scan), etc.

prop---scan attribute, which can be set to active scan or passive scan of 1Mand CODED PHY,
filter strategy, etc.

dup_filt_pol---duplicate filtering. When it is enabled, the received advertising signal will not be
repeatedly reported to the application.

scan_intv---scan interval, how often the controller scans.

87

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

3.2

scan_win---scan window, the duration of each scan.
duration---scan duration, which indicates continuous scan when configured to 0.
period---whether to scan periodically, with the duration as the period.

Table 3-2. Example code of configure scan parameters

/**@brief Function for set scan parameters.
* @param(in] param scan parameters (see enum #ble_gap_scan_param t)
* @retval BLE_ ERR_NO_ERROR If ble scan module disable successfully.
*/

ble_status_t ble_scan_param set(ble_gap_scan_param_t *p_param);

[** The default scan parameters are as follow s*/
p_ble_scan_env->param.type =BLE GAP_SCAN_TYPE_GEN_DISC;
p_ble_scan_env->param.prop = BLE GAP_SCAN_PROP_PHY_1M_BIT |
BLE_GAP_SCAN_PROP_ACTNVE_1M_BIT |
BLE GAP_SCAN_PROP_PHY_CODED BIT |
BLE _GAP_SCAN_PROP_ACTNVE_CODED BIT;
p_ble_scan_env->param.dup_filt_pol = BLE_GAP_DUP_FILT_EN;
p_ble_scan_env->param.scan_intv_1m = 160; // 100ms
p_ble_scan_env->param.scan_intv_coded = 160; // 100ms
p_ble_scan_env->param.scan_win_1m = 48; // 30ms
p_ble_scan_env->param.scan_win_coded =48; // 30ms

p_ble_scan_env->param.duration = 0;

p_ble_scan_env->param.period =0;

3. To enable the scan function, call ble_scan_enable API.

Table 3-3. Example code of enable scan

void app_scan_enable(bool update_rssi)
{
if (ble_scan_enable() = BLE ERR_NO_ERROR) {
dbg_print(NOTICE, "app_scan_enable faill\r\n");

return;

Advertising

The BLE adwertising function is used to send advertising messages, allowing surrounding
BLE devices to discover and connect it or send periodic data, etc. It can be configured as
legacy adwertising (traditional advertising), extended advertising, and periodic advertising.

Quickly use the function in the following steps:

88

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

1. Register an event handler to handle changes in advertising status and report received
scan requests.

Table 3-4. Example code of advertising event handler

static void app_adv_mgr_evt_hdir(ble_adv_evt t adv_evt, void *p_data, void *p_context)
{

app_adv_actv_t *p_adv = (app_adv_actv_t *)p_context;

switch (adv_evt) {
caseBLE ADV_EVT_STATE CHG: {
ble_adv_state_chg_t *p_chg = (ble_adv_state_chg_t *)p_data;

ble_adv_state t old_state = p_adv->state;

dbg_print(NOTICE, "adv state change 0x%x ==> 0x%x, reason 0x%x\r\n", old_state,

p_chg->state, p_chg->reason);

p_adv->state = p_chg->state;

if ((p_chg->state == BLE_ADV_STATE_CREATE) & (old_state ==
BLE_ADV_STATE_CREATING)) {
p_adv->idx = p_chg->adv_idx;
app_print("adv index %d\r\n", p_adv->idx);

app_adv_start(p_adv);
} else if ((p_chg->state == BLE ADV_STATE_CREATE) && (old_state ==
BLE ADV_STATE_START)) {
dbg_print(NOTICE, "adv stopped, remove %d\r\n", p_adv->remove_after_stop);

if (p_adv->remove_after_stop) {
ble_adv_remove(p_adv->idx);
p_adv->remove_after_stop = false;
}
} else if (p_chg->state == BLE ADV_STATE_IDLE) {
free_adv_actv(p_adv);

}
} break;

case BLE_ ADV_EVT_DATA_UPDATE_RSP: {
ble_adv_data_update_rsp_t *p_rsp = (ble_adv_data_update_rsp_t *)p_data;
dbg_print(NOTICE, "adv data update rsp, type %d, status Ox%x\r\n", p_rsp->type,
p_rsp->status);
} break;

caseBLE ADV_EVT_SCAN_REQ_RCV: {

89

c AN152
GD32VW553 BLE Development Guide

GigaDevice

ble_adv_scan_req_rcv_t *p_req = (ble_adv_scan_req_rcv_t *)p_data;
dbg_print(NOTICE, "scan req rcv, device addr %02X:%02X:%02X:%02X:%02X:%02X\r\n",
p_reqg->peer_addr.addr[5], p_req->peer_addr.addr[4], p_req->peer_addr.addr[3],
p_reg->peer_addr.addr[2], p_req->peer_addr.addr[1], p_req->peer_addr.addr[0]);
} break;

default:

break;

2. The device sends a advertising message mainly in two steps: create a advertising and
enable it. The adwertising can be enabled only in successfully created status. For
example, the following application layer creates advertising code and configures different
adwertising parameters based on different advertising types.

Table 3-5. Example code of create advertising

ble_status_t app_adv_create(app_adv_param t *p_param)

{
app_adv_actv_t *p_adyv;

ble_adv_param t adv_param = {0};

p_adv = get_free_adv_actv();
if (p_adv == NULL) {
return BLE_ ERR_NO_RESOURCES;

p_adv->max_data _len = p_param->max_data_len;

adv_param.param.ow n_addr_type = p_param->ow n_addr_type;

if (p_param->type == BLE_ADV_TYPE_LEGACY) ({
adv_param.param.type = BLE_GAP_ADV_TY PE_LEGACY;

adv_param.param.prop = p_param->prop;

if (p_param->w [_enable) {
adv_param.param.fiter_pol =BLE GAP_ADV_ALLOW_SCAN_FAL_CON_FAL;
adv_param.param.disc_mode = BLE_GAP_ADV_MODE_NON_DISC;

}else {
adv_param.param.fiter_pol =BLE _GAP_ADV_ALLOW_SCAN_ANY_CON_ANY;

adv_param.param.disc_mode = p_param->disc_mode;

adv_param.param.ch_map =APP_ADV_CHMAP;

adv_param.param.primary_phy = p_param->pri_phy;

90

c AN152

GigaDevice GD32VW553 BLE Development Guide

}else if (p_param->type == BLE_ADV_TYPE_EXTENDED) ({
adv_param.param.type = BLE GAP_ADV_TY PE_EXTENDED;

adv_param.param.prop = p_param->prop;

if (p_param->w [_enable) {
adv_param.param.fiter_pol =BLE GAP_ADV_ALLOW_SCAN_FAL_CON_FAL;
adv_param.param.disc_mode = BLE_GAP_ADV_MODE_NON_DISC;

}else {
adv_param.param.fiter_pol =BLE GAP_ADV_ALLOW_SCAN_ANY_CON_ANY;

adv_param.param.disc_mode = p_param->disc_mode;

adv_param.param.ch_map =APP_ADV_CHMAP;

adv_param.param.primary_phy = p_param->pri_phy;

adv_param.param.adv_sid = get_adv_sid();

adv_param.param.max_skip = 0x00;

adv_param.param.secondary_phy = p_param->sec_phy;
}else {

return BLE_GAP_ERR_INVALID_PARAM;

if (adv_param.param.prop & BLE_GAP_ADV_PROP_DIRECTED_BIT) {
adv_param.param.peer_addr = p_param->peer_addr;
adv_param.param.disc_mode = BLE GAP _ADV_MODE_NON_DISC;

p_adv->peer_addr = p_param->peer_addr;

if (adv_param.param.prop & BLE_GAP_ADV_PROP_ANONY MOUS_BIT) {
adv_param.param.disc_mode = BLE GAP_ADV_MODE_NON_DISC;

p_adv->disc_mode = adv_param.param.disc_mode;

adv_param.param.adv_intv_min =APP_ADV_INT_MIN;
adv_param.param.adv_intv_max = APP_ADV_INT_MAX;

if (p_adv->disc_mode == BLE_GAP_ADV_MODE_LIM_DISC) {

adv_param.param.duration = 1000; /I 10s

if (p_param->type '= BLE ADV_TYPE _LEGACY) {

adv_param.include_tx_pwr = true;

adv_param.scan_req_ntf =true;

91

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

return ble_adv_create(&adv_param, app_adv_mgr_evt_hdir, p_adv);

Enable the advertising. After receiving the message that the advertising is successfully
created in the registered event handler, call the ble_adv_start interface to enable the
advertising. Afterwards, receiving the reported adwertising status
BLE_ADV_STATE_START in the event handler means that the advertising is enabled
successfully.

The last three parameters in the ble_adv_start AP| are used to set advertising data, scan
response data, and periodic advertising data respectively. The content can be set directly by
the application layer or packaged by the BLE ADV module through configuration parameters.
For example, all data are set directly by the application layer in the following code.

Table 3-6. Example code of enable advertising

{

static uint8_t adv_data_1[7] ={0x06, 0x16, 0x52, 0x18, 0x18, 0x36, 0x9A};
static uint8_t per_data_1[52] = {0x33, 0x16, 0x51, 0x18, 0x40, 0x9c, 0x00, 0x01, 0x02, 0x06,

static void app_adv_start(app_adv_actv_t *p_adv)

0x00, 0x00, 0x00, 0x00, 0x0d, 0x02, 0x01, 0x08, 0x02, 0x02,
0x01, 0x03, 0x04, 0x78, 0x00, 0x02, 0x05, 0x01, 0x07, 0x03,
0x02, 0x04, 0x00, 0x02, 0x04, 0x80, 0x01, 0x06, 0x05, 0x03,
0x00, 0x04, 0x00, 0x00, 0x02, 0x06, 0x05, 0x03, 0x00, 0x08,
0x00, 0x00

h

ble_adv_data_set_t adv;
ble_adv_data_set t scan_rsp;
ble_adv_data_set_t per_adyv;
ble_data_t adv_data;

ble_data_t per_adv_data;

adv.data_force = true;
scan_rsp.data_force = true;

per_adv.data_force = true;

adv_data.len = 7;

adv_data.p_data = adv_data_1;

per_adv_data.len =52;

per_adv_data.p_data = per_data_1;

adv.data.p_data_force = &adv_data;

92

°

AN152
GD32VW553 BLE Development Guide

GigaDevice
scan_rsp.data.p_data_force = &adv_data;
per_adv.data.p_data_force = &per_adv_data;
ble_adv_start(p_adv->idx, &adv, &scan_rsp, &per_adv);
}
3.3. GATT server application
GD32VW553 SDK provides functions such as adding/deleting senices and sending
notification/indication as BLE GATT server role. Users can implement specific senices
according to their requirements. For specific APls, see BLE gatts APl #% 5! K625/ s .
Here is an example of DIS to illustrate how to use these APlIs to implement a senvice server.
The file is MSDK\ble\profile\dis\ble_diss.c.
3.3.1. Adding a service
Add a seniice to the BLE GATT server module through the ble_gatts_svc_add function, whose
input parameters include senice UUID, service attribute database, callback handler for GATT
server message, etc. Senvice UUID can be 16-bit, 32-bit, or 128-bit. They need to be
described in the info and table type parameters. For example, in the code of ble diss, UUID
16 is used for senice UUID. When calling the ble_gatts_svc_add function, use SVC_UUID(16)
to describe it.
Table 3-7. Example code of add a service
ret = ble_gatts_svc_add(&ble_diss_svc_id, ble_dis_uuid, 0, SVC_UUID(16), ble_diss_attr_db,
BLE DIS_HDL_NB, ble_diss_srv_cb);
3.3.2. Service attribute database

Seniice attribute database is an array composed ofa series ofble_gatt_attr_desc_t elements.
Each element in the array is an attribute, which can be primary senice, characteristic
declaration, characteristic value declaration, etc. Users can freely combine them according to
the requirements of different senices.

Each attribute consists of a UUID and its attribute description. All attributes in DIS are read-
only, so just specify the RD property. For the characteristic value declaration, the maximum
size of the value can also be specified.

Table 3-8. Example code of senice database

const ble_gatt_attr_desc_t ble_diss_attr_db[BLE DIS_HDL_NB] =
{

[BLE_DIS_ HDL_SVC] ={UUD_16BIT_TO ARRAY(BLE_GATT_DECL_PRIMARY_SERVICE),
PROP(RD), 0},

93

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

[BLE DIS_HDL_MANUFACT NAME_CHAR] =
{UUID_16BIT_TO_ARRAY(BLE_GATT DECL_CHARACTERISTIC), PROP(RD), 0},
[BLE_DIS_HDL_MANUFACT NAME_VAL] =
{UUID_16BIT_TO_ARRAY(BLE_DIS_CHAR MANUF_NAME), PROP(RD),
BLE DIS_VAL_MAX_LEN},

[BLE_DIS_HDL_MODEL_NB_CHAR] =

{UUID_16BIT_TO_ARRAY(BLE_GATT DECL_CHARACTERISTIC), PROP(RD), 0},
[BLE DIS_HDL_MODEL_NB_VAL] =

{UUID_16BIT_TO_ARRAY(BLE_DIS_CHAR MODEL_NB), PROP(RD),

BLE DIS_VAL_MAX_LEN},

[BLE DIS_HDL_SERIAL_NB_CHAR] =

{UUD_16BIT_TO_ARRAY(BLE_GATT_DECL_CHARACTERISTIC), PROP(RD), 0},
[BLE DIS_HDL_SERIAL_NB_VAL] =

{UUD_16BIT_TO_ARRAY(BLE_DIS_CHAR SERIAL_NB), PROP(RD),

BLE DIS_VAL MAX_LEN},

[BLE DIS_HDL_HARD_REV_CHAR] =
{UUID_16BIT_TO_ARRAY(BLE_GATT_DECL_CHARACTERISTIC), PROP(RD), 0},

[BLE_DIS_HDL_HARD_REV_VAL] = {UUD_16BIT_TO_ARRAY(BLE DIS_CHAR_HW_REV),

PROP(RD), BLE DIS_VAL_MAX_LEN},

[BLE DIS_HDL_FIRM_REV_CHAR] =
{UUID_16BIT_TO_ARRAY(BLE_GATT_DECL_CHARACTERISTIC), PROP(RD), 0},

[BLE DIS_HDL_FIRM_REV_VAL] ={UUD_16BIT_TO_ARRAY(BLE DIS_CHAR FW_REV),
PROP(RD), BLE DIS VAL_MAX_LEN},

[BLE DIS_HDL_SW_REV_CHAR] =
{UUID_16BIT_TO_ARRAY(BLE_GATT_DECL_CHARACTERISTIC), PROP(RD), 0},

[BLE DIS_HDL_SW_REV_VAL] = {UUD_16BIT_TO_ARRAY(BLE DIS_CHAR SW_REV),
PROP(RD), BLE DIS VAL_MAX_LEN},

[BLE_DIS_HDL_SYSTEM_ ID_CHAR] =
{UUID_16BIT_TO_ARRAY(BLE_GATT DECL_CHARACTERISTIC), PROP(RD), 0},

[BLE DIS_HDL_SYSTEM_ID_VAL] ={UUID_16BIT_TO_ARRAY(BLE_DIS_CHAR SYS_ID),
PROP(RD), BLE DIS_SYS_ID_LEN},

[BLE DIS_HDL_IEEE_CHAR] =
{UUD_16BIT_TO_ARRAY(BLE_GATT DECL_CHARACTERISTIC), PROP(RD), 0},

[BLE DIS_HDL_IEEE_VAL] = {UUID_16BIT_TO_ARRAY(BLE_DIS_CHAR_IEEE_CERTIF),
PROP(RD), BLE DIS_VAL_MAX_LEN},

94

°

AN152
GD32VW553 BLE Development Guide

GigaDevice
[BLE DIS_HDL_PNP_ID_CHAR] =
{UUID_16BIT_TO_ARRAY(BLE_GATT_DECL_CHARACTERISTIC), PROP(RD), 0},
[BLE_DIS_HDL_PNP_ID_VAL] = {UUD_16BIT_TO_ARRAY(BLE_DIS_CHAR PNP_ID),
PROP(RD), BLE DIS_PNP_ID_LEN},
|5
3.3.3. Service attribute read and write

The last parameter of ble_gatts _svc_add is to register a GATT server event handler callback
function, which is executed when the peer client performs read or write operation on the
senice, GATT server event typeis BLE_SRV_EVT_GATT_OPERATION, subevent type is
BLE_SRV_EVT READ_REQ or BLE_SRV_EVT WRITE_REQ, subevent data structure is
ble_gatts_read_req_t or ble_gatts_write_req_t, in which there is an att_idx parameter
indicates the corresponding attribute index in database table when registered.

Table 3-9. Example code of attribute read and write function

ble_status_t ble_diss_srv_cb(ble_gatts_msg_info_t *p_srv_msg_info)
{

uint8_t attr_idx = 0;

uint16_t len = 0;

uint8_t attr_len = 0;

uint8_t *p_attr = NULL,;

if (p_srv_msg_info->srv_msg_type == BLE SRV_EVT_GATT_OPERATION) ({
if (p_srv_msg_info->msg_data.gatts_op_info.gatts_op_sub_evt ==
BLE SRV_EVT_READ_REQ) {
ble_gatts_read_req_t *p_read_req =

&p_srv_msg_info->msg_data.gatts_op_info.gatts_op_data.read_req;

attr_idx = p_read_reqg->att_idx;

sw itch (attr_idx) {

caseBLE DIS_HDL_MANUFACT_NAME_VAL: {
p_attr =ble_diss_val.manufact_name;
attr_len =ble_diss_val.manufact_name_len;

} break;

caseBLE DIS_HDL_MODEL_NB_VAL: {
p_attr =ble_diss_val.model _num;
attr_len =ble_diss_val.model_num_len;
} break;

case BLE DIS_HDL_SERIAL_NB_VAL: {

p_attr =ble_diss_val.serial num;

attr_len =ble_diss_val.serial_num_len;

95

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

} break;

caseBLE DIS_HDL_HARD_REV_VAL: {
p_attr =ble_diss_val.hw _rev;
attr_len = ble_diss_val.hw_rev_len;

} break;

caseBLE DIS_HDL_FIRM _REV_VAL: {
p_attr =ble_diss_val.fw_rev;
attr_len = ble_diss_val.fw_rev_len;

} break;

case BLE DIS_HDL_SW_REV_VAL: {
p_attr =ble_diss_val.sw_rev;
attr_len =ble_diss_val.sw_rev_len;
} break;

case BLE DIS_HDL_SYSTEM_ID_VAL: {

p_attr =ble_diss_val.sys_id;
attr len =BLE DIS SYS_ID LEN;
} break;

caseBLE DIS_HDL_IEEE_VAL: {
p_attr =ble diss_valieee_data;
attr_len =ble_diss_val.ieee_data_len;
} break;

caseBLE DIS_HDL_PNP_ID_VAL: {
p_attr =ble_diss_val.pnp_id;
attr_len =BLE _DIS_PNP_ID_LEN;
} break;

default:

return BLE_ATT_ERR_INVALID_HANDLE;

if (p_read_reqg->offset > attr_len) {
return BLE_ ATT_ERR_INVALID_OFFSET;

len =ble_min(p_read_reg->max_len, attr_len - p_read_req->offset);

p_read_reg->val_len = len;

memcpy(p_read_reqg->p_val, p_attr, len);

96

°

AN152
GD32VW553 BLE Development Guide

GigaDevice
}
}
return BLE ERR_NO_ERROR;
If there is an attribute in the senice that supports Client Characteristic Configuration
declaration (CCCD) and if peer client enables it, then ble_srv_ntf ind_send interface can be
used to send a notification/indication.
Table 3-10. Example code of send notification
static void bcw |_ntf_event_send(uint8_t *p_val, uint16_t len)
{
if (bcw |_env.ntf_cfg==10) {
dbg_print(ERR, "%s fail\r\n", __func__);
return;
}
ble_gatts_ntf_ind_send(bcw|_env.conn_id, bcwl _env.prf_id, BCW_IDX_NTF, p_val, len,
BLE_GATT_NOTIFY);
3.4. BLE distribution network
Blue courier is a BLE-based WIFI network configuration function. The SSID, password,
channel, and encryption type of WiFi are transferred through the protocol to the GD device,
which can be connected to AP through such information or establish SoftAP. The link supports
data fragmentation and CRC16 integrity verification. Security relies on the encryption of the
BLE link, and the encoding method is taken for the transfer of the message containing SSID
and password to awoid transferring the plaintext over the air. Execute the ble_courier_wifi
command in the "AN153 GD32VW553 Basic Commands User Guide".
3.4.1. Process of Blue courier

By taking the example of configuring WiFi as the station to connect to AP, the following
introduces key steps of advertising, connection, service discovery, enable notification,
handshake, data transfer, and reportconnection sate.

1. After Blue courier wifi is enabled, the GD device will register the senice with the GATT
server module and send the advertisingwith special advertising data. The advertising can be
defined by the user as required.

2. After the advertising is searched for through a WeChat Mini Program, the phone as GATT
Client will connect to the GD device.

3. After establishing the GATT connection, the phone will send the handshake request
message to the GD device, which will return the handshake response message upon
receiving the message.

97

" AN152

GD32VW553 BLE Development Guide

GigaDevice
4. The phone can send the following messages to the GD device: Connect to WiFi; create
SoftAp; get the WiFi status.
Figure 3-1. Process of Blue courier
Phone GD32
|
et Advertising :
Establish GATT connections, discover services, enable notifications ._|
|
|
Handshake req: MTU + recv_size -':
Handshake resp: MTU + recv size |
~ |
|
|
Connect req: ssid + password [
Il-l
- Connect resp: status :
[
WIFI status report req ._:
_— WIFI status report |
[
[
[
[
[
[
3.4.2. GATT description

To add a distribution network senvice, refer to the description in Adding a service.

For the description of UUID used by the distribution network senice, see Table 3-11.
Distribution network service UUID #% i K4E2)7/ /). .

Table 3-11. Distribution network senice UUID

Attribute Description
Blue courier WIFl Service UUID = 0000FFF0-0000-1000-8000-00805F9B34FB
UUID = 0000FFF1-0000-1000-8000-00805F9B34FB

- Characteristic Properties = Write
C1 Characteristic

max length = 256 bytes
(Client TX Buffer)

Security level=unauth (the link must be encrypted, and
pairing is required for the firsttime of connection)
C2 Characteristic UUID = 0000FFF2-0000-1000-8000-00805F9B34FB

98

°

AN152
GD32VW553 BLE Development Guide

GigaDevice
(Client RX Buffer) Characteristic Properties = Notify
max length = 256 bytes
3.4.3. Advertising data
The Blue courier WiFi Senvice UUID must be included in the advertising data so that other
devices can discover that the local device supports the BLE distribution network function. The
peer device can filter by Service UUID when searching for BLE devices. For details, see the
following table.
Table 3-12. Service UUID in advertising data
Byte Value Description
0 0x03 AD[0] Length == 3 bytes
1 0x03 AD[0] Type == 1 (Flags) Complete list of 16 bit service UUIDs.
2-3 OxFFFO 16-bit Blue courier WIFI Service UUID
3.4.4. Frame format

The frame format for communication between the mobile app of Blue courier and the GD

device is as follows:

Table 3-13. Frame format of blue courier

Field

Size (byte)

flag

1

sequen

ce

1

opcod

e

1

data_len

1

data

${data_len}

crc

2

flag

The frame control field occupies a byte, where each bit has a different meaning, as listed in

the following

table:

Table 3-14. Frame control field

Bit Meaning
Begin: It means w hether the frame is the firstfragment.
e 0: It means the frame is the remaining fragment.
e 1: It means the frame is the first fragment.
0x01 e The fragment is used to transfer long data. Only the firsttw o bytes in the
data field of the first packet of the fragmented packet show the total
length of the data content and are used to indicate the memory size
allocated for peer receiving, namely, data = total_len + data.
0x02 End: It means w hether the frame is the last fragment.

99

°

AN152

GD32VW553 BLE Development Guide

GigaDevice
e 0: It means the frame is not the last fragment.
e 1: It means the frame is the last fragment.
If both the Begin and End bits are set to 1, the packet is not fragmented.
ACK: It means w hether the receiver should reply with ACK.
0x04 e 0: It means the receiver unnecessarily replies with ACK.
e 1: It means the receiver should reply with ACK.
0x08~0x80 Reserved
sequence
Sequence control field. When a frame is sent, regardless of its type, its sequence will
automatically increase by 1 to prevent replay attack. The sequence will be cleared after each
re-connection.
opcode

The opcode field occupies a byte, divided into two parts: Type and Subtype. The Type
occupies two higher bits, which indicate the frame is the management or data frame. The

Subtype occupies sixlower bits, which indicate the meaning ofthe management or data frame.

1. Management frame (binary system: 0x0 b’00).

Table 3-15. Content of management frame

Management Meaning Description Content
frame
0x0 Handshake Handshake is used to The data field totally occupies
(b'000000) exchange the mtus at both four bytes, including tw o bytes
ends and the maximum formtu and tw o bytes for
receiving length, determining recv_size.
the size of the fragmented Phone -> GD device:
packet and the total length of mtu + recv_size
the largest report. The mtu, GD device -> phone:
w hicheveris smaller, should be mtu + recv_size
taken as the fragment size at
both ends. recv_sizeis the
maximum peer receiving
length, w hich should be taken
as the maximum sending
length by the receiver.
0x1 ACK The data field of the ACK frame The data field occupies a byte,
(b'000001) uses the sequential value of the using the same sequential
response frame. value as that of the response
frame.

100

°

GigaDevice

AN152
GD32VW553 BLE Development Guide

0x2
(b'000100)

Error

reporting

The data field is used to report

an error to the peer device. The

error code can be defined by

the user.

status: 1byte

2. Dataframe (binary system: 0x1b’01).

Table 3-16. Content of data frame

Data Meaning Description Remarks
frame
0x0 Send the The data field is used to
(b'000000) user-defined transfer the user-defined data
data. to the peer device for test.
0x1 Get the The phone sends the GD device -> phone:
(b'000001) | information of | message witha length of O to Structure of each ssid:
the WiFi scan | the GD device. Upon receiving len+rssi+mode+ssid
list. the message, the GD device len = 2byte(rssi+mode) + ssid
wiill trigger WiFi scan and send length
the scan information through
the message to the phone.
0x2 Send the Upon receiving the information Phone -> GD device:
(b'000010) connection of AP to be connected by the ssid_len + ssid + password_len +
request of the STA device, the GD device passw ord + random
STA device. wi ill trigger WiFi connection GD device -> phone:
and send the connection status
result to the phone. The sent
data should be randomly ssid_len, passw ord_len, random,
encoded to avoid generating status: 1byte
the same code data.
0x3 Send the The phone sends the GD device -> phone:
(b'000011) [disconnection message w itha length of 0 to status
request of the [the GD device. Upon receiving
STA device. the message, the GD device status: 1byte
w ill trigger WiFi disconnection
and send the status to the
phone.
0x4 Send the Upon receiving the information Phone -> GD device:
(b'000100) request of of AP to be created by the ssid_len + ssid + password_len+
creating the device, the GD device wiill passw ord + channel +akm +
SoftAP trigger softAp creation and hide + random
mode. send the creation result to the GD device -> phone:

101

°

AN152

GD32VW553 BLE Development Guide

GigaDevice
phone. The sent data should status
be randomly encoded to avoid
generating the same code ssid_len, password_len, channel,
data. akm, hide, random, status: 1byte
0x5 Send the The phone sends the GD device -> phone:
(b'000101) request of message with a length of 0 to status
stopping the the GD device. Upon receiving
SoftAP the message, the GD device status: 1byte
mode. wiill trigger softAp stopping
and send the status to the
phone.
0x6 Get WiFi The phone sends the it will notify the phone of the
(b'000110) status. message with a length of 0 to current device mode, connection
the GD device. After receiving status, SSID, and channel by
the message, the GD device reporting the WiFi connection
will report WiFi status to the status to the phone. For the
phone. message content structure, refer
to the app implementation end.
crc

crc16 is used for integrity verification for communication through Blue courier by making a
calculation based on four parts, namely sequence, opcode, data_len, and data.

102

°

GigaDevice

AN152

GD32VW553 BLE Development Guide

4. Revision history

Table 4-1. Revision history

Revision No.

Description

Date

1.0

Initial release

Nov.24.2023

1.1

Add AP such as
ble_conn_enable_central feat,
ble_svc_data_save,
ble_svc_data_load and
ble_register_hci_uart.
Modify API such as ble_stack init

and ble_stack_task_init.

Feb.29.2024

1.2

Add APIs such as
ble_adp_callback _unregister,
ble_adp_disable,
ble_scan_callback_unregister,
ble_sec_callback _unregister,
ble_list_callback_unregister,
ble_per_sync_callback_unregister,
ble_gattc_svc_unreg,
ble_stack_task_deinit,
ble_app_task deinit.

Modify APIs suchas ble_stack_init
and ble_stack_task_init.
Delete APl such as

ble_stack_task_suspend.

Jul.10.2024

1.3

Add APIs such as
ble_adp_public_addr_get,
ble_adp_public_addr_set,

ble_scan_param get,
ble_gatts_set_attr_val,
ble_gatts_list_svc,
ble_gatts_list_char,
ble_gatts_list_desc
Modify APIs suchas
ble_scan_param_set,
ble_sw _init, ble_sw _deinit
Delete APIs such as
ble_adp_init, ble_adp_disable,
ble_adp_cfg, ble_adv_init,
ble_adv_deint, ble_scan_init,

ble_scan_reinit, ble_conn_init,

Mar.4.2025

103

" AN152

GigaDevice GD32VW553 BLE Development Guide

ble_sec_init, ble_list_init,
ble_per_sync_init, ble_storage_init,
ble_gatts_init, ble_gattc_init,
ble_stack task init,
ble_stack_deinit, ble_app_task_init,
ble_app_task deinit,
ble_work_status_set,
ble_register_hci_uart.
Add overview of BLE Mesh.

104

c AN152

GigaDevice GD32VW553 BLE Development Guide

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This
document, including any product of the Company described in this document (the “Product”), is ow ned by the Company
according to the law s of the People’s Republic of China and other applicable laws. The Company reserves all rights
under such laws and no Intellectual Property Rights are transferred (either wholly or partially) or licensed by the
Company (either expressly or impliedly) herein. The names and brands of third party referred thereto (if any) are the
property of their respective ow ner and referred to for identification purposes only.

To the maximum extent permitted by applicable law, the Company makes no representations or w arranties of any
kind, express or implied, withregard to the merchantability and the fitness for a particular purpose of the Product, nor
does the Company assume any liability arising out of the application or use of any Product. Any information provided in
this document is provided only for reference purposes. It is the sole responsibility of the user of this document to
determine w hether the Product is suitable and fitfor its applications and products planned, and properly design, program,
and test the functionality and safety of its applications and products planned using the Product. The Product is designed,
developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and the
Product is not designed or intended for use in (i) safety critical applications such as w eapons systems, nuclear facilities,
atomic energy controller, combustion controller, aeronautic or aerospace applications, traffic signal instruments,
pollution control or hazardous substance management; (ii) life-support systems, other medical equipment or systems
(including life support equipment and surgical implants); (iii) automotive applications or environments, including but not
limted to applications for active and passive safety of automobiles (regardless of front market or aftermarket), for
example, EPS, braking, ADAS (camera/fusion), EMS, TCU, BMS, BSG, TPMS, Airbag, Suspension, DMS, ICMS,
Domain, ESC, DCDC, e-clutch, advanced-lighting, etc.. Automobile herein means a vehicle propelled by a self-
contained motor, engine or the like, such as, without limitation, cars, trucks, motorcycles, electric cars, and other
transportation devices; and/or (iv) other uses w here the failure of the device or the Product can reasonably be expected
to result in personal injury, death, or severe property or environmental damage (collectively "Unintended Uses").
Customers shall take any and all actions to ensure the Product meets the applicable law s and regulations. The Company
is not liable for, in whole or in part, and customers shall hereby release the Company as well as its suppliers and/or
distributors from, any claim, damage, or other liability arising from or related to all Unintended Uses of the Product.
Customers shall indemnify and hold the Company, and its officers, employees, subsidiaries, affiliates as well as its
suppliers and/or distributors harmless fromand against all claims, costs, damages, and other liabilities, including claims
for personal injury or death, arising from or related to any Unintended Uses of the Product.

Information in this document is provided solely in connection withthe Product. The Company reserves the right to
make changes, corrections, modifications or improvements to this document and the Product described herein at any
time without notice. The Company shall have no responsibility w hatsoever for conflicts or incompatibilities arising from
future changes to them. Information in this document supersedes and replaces information previously supplied in any

prior versions of this document.

© 2025 GigaDevice Semiconductor Inc. — All rights reserved

105

	Table of Contents
	List of Figures
	List of Tables
	1. Overview of BLE SDK
	1.1. BLE software framework
	1.2. Overview of BLE Mesh

	2. BLE API
	2.1. BLE adapter API
	2.1.1. Adapter message type
	2.1.2. ble_adp_callback_register
	2.1.3. ble_adp_callback_unregister
	2.1.4. ble_adp_reset
	2.1.5. ble_adp_chann_map_set
	2.1.6. ble_adp_loc_irk_set
	2.1.7. ble_adp_loc_irk_get
	2.1.8. ble_adp_identity_addr_get
	2.1.9. ble_adp_public_addr_get
	2.1.10. ble_adp_identity_addr_set
	2.1.11. ble_adp_name_set
	2.1.12. ble_adp_local_ver_get
	2.1.13. ble_adp_sugg_dft_data_len_get
	2.1.14. ble_adp_tx_pwr_range_get
	2.1.15. ble_adp_max_data_len_get
	2.1.16. ble_adp_adv_sets_num_get
	2.1.17. ble_adp_addr_resolve
	2.1.18. ble_adp_static_random_addr_gen
	2.1.19. ble_adp_resolvable_private_addr_gen
	2.1.20. ble_adp_none_resolvable_private_addr_gen
	2.1.21. ble_adp_test_tx
	2.1.22. ble_adp_test_rx
	2.1.23. ble_adp_test_end

	2.2. BLE advertising API
	2.2.1. Advertising message type
	2.2.2. ble_adv_create
	2.2.3. ble_adv_start
	2.2.4. ble_adv_restart
	2.2.5. ble_adv_stop
	2.2.6. ble_adv_remove
	2.2.7. ble_adv_data_update

	2.3. BLE advertising data API
	2.3.1. ble_adv_find
	2.3.2. ble_adv_cmpl_name_find
	2.3.3. ble_adv_short_name_find
	2.3.4. ble_adv_srv_uuid_find
	2.3.5. ble_adv_appearance_find

	2.4. BLE scan API
	2.4.1. Scan message type
	2.4.2. ble_scan_callback_register
	2.4.3. ble_scan_callback_unregister
	2.4.4. ble_scan_enable
	2.4.5. ble_scan_disable
	2.4.6. ble_scan_param_set
	2.4.7. ble_scan_param_get

	2.5. BLE connection API
	2.5.1. Connection message type
	2.5.2. ble_conn_callback_register
	2.5.3. ble_conn_callback_unregister
	2.5.4. ble_conn_connect
	2.5.5. ble_conn_disconnect
	2.5.6. ble_conn_connect_cancel
	2.5.7. ble_conn_sec_info_set
	2.5.8. ble_conn_peer_name_get
	2.5.9. ble_conn_peer_feats_get
	2.5.10. ble_conn_peer_appearance_get
	2.5.11. ble_conn_peer_version_get
	2.5.12. ble_conn_peer_slave_prefer_param_get
	2.5.13. ble_conn_peer_addr_resolution_support_get
	2.5.14. ble_conn_peer_rpa_only_get
	2.5.15. ble_conn_peer_db_hash_get
	2.5.16. ble_conn_phy_get
	2.5.17. ble_conn_phy_set
	2.5.18. ble_conn_pkt_size_set
	2.5.19. ble_conn_chann_map_get
	2.5.20. ble_conn_ping_to_get
	2.5.21. ble_conn_ping_to_set
	2.5.22. ble_conn_rssi_get
	2.5.23. ble_conn_param_update_req
	2.5.24. ble_conn_per_adv_sync_trans
	2.5.25. ble_conn_name_get_cfm
	2.5.26. ble_conn_appearance_get_cfm
	2.5.27. ble_conn_slave_prefer_param_get_cfm
	2.5.28. ble_conn_name_set_cfm
	2.5.29. ble_conn_appearance_set_cfm
	2.5.30. ble_conn_param_update_cfm
	2.5.31. ble_conn_local_tx_pwr_get
	2.5.32. ble_conn_peer_tx_pwr_get
	2.5.33. ble_conn_tx_pwr_report_ctrl
	2.5.34. ble_conn_path_loss_ctrl
	2.5.35. ble_conn_enable_central_feat

	2.6. BLE security API
	2.6.1. Security message type
	2.6.2. ble_sec_callback_register
	2.6.3. ble_sec_callback_unregister
	2.6.4. ble_sec_security_req
	2.6.5. ble_sec_bond_req
	2.6.6. ble_sec_encrypt_req
	2.6.7. ble_sec_key_press_notify
	2.6.8. ble_sec_key_display_enter_cfm
	2.6.9. ble_sec_oob_req_cfm
	2.6.10. ble_sec_nc_cfm
	2.6.11. ble_sec_ltk_req_cfm
	2.6.12. ble_sec_irk_req_cfm
	2.6.13. ble_sec_csrk_req_cfm
	2.6.14. ble_sec_encrypt_req_cfm
	2.6.15. ble_sec_pairing_req_cfm
	2.6.16. ble_sec_oob_data_req_cfm
	2.6.17. ble_sec_oob_data_gen

	2.7. BLE list API
	2.7.1. List message type
	2.7.2. ble_list_callback_register
	2.7.3. ble_list_callback_unregister
	2.7.4. ble_fal_op
	2.7.5. ble_fal_list_set
	2.7.6. ble_fal_clear
	2.7.7. ble_fal_size_get
	2.7.8. ble_ral_op
	2.7.9. ble_ral_list_set
	2.7.10. ble_ral_clear
	2.7.11. ble_ral_size_get
	2.7.12. ble_loc_rpa_get
	2.7.13. ble_peer_rpa_get
	2.7.14. ble_pal_op
	2.7.15. ble_pal_list_set
	2.7.16. ble_pal_clear
	2.7.17. ble_pal_size_get

	2.8. BLE periodic sync API
	2.8.1. Periodic sync message type
	2.8.2. ble_per_sync_callback_register
	2.8.3. ble_per_sync_callback_unregister
	2.8.4. ble_per_sync_start
	2.8.5. ble_per_sync_cancel
	2.8.6. ble_per_sync_terminate
	2.8.7. ble_per_sync_report_ctrl

	2.9. BLE storage API
	2.9.1. ble_peer_data_bond_store
	2.9.2. ble_peer_data_bond_load
	2.9.3. ble_peer_data_delete
	2.9.4. ble_peer_all_addr_get
	2.9.5. ble_svc_data_save
	2.9.6. ble_svc_data_load

	2.10. BLE gatts API
	2.10.1. gatts message type
	2.10.2. ble_gatts_svc_add
	2.10.3. ble_gatts_svc_rmv
	2.10.4. ble_gatts_ntf_ind_send
	2.10.5. ble_gatts_ntf_ind_send_by_handle
	2.10.6. ble_gatts_ntf_ind_mtp_send
	2.10.7. ble_gatts_mtu_get
	2.10.8. ble_gatts_svc_attr_write_cfm
	2.10.9. ble_gatts_svc_attr_read_cfm
	2.10.10. ble_gatts_get_start_hdl
	2.10.11. ble_gatts_set_attr_val
	2.10.12. ble_gatts_list_svc
	2.10.13. ble_gatts_list_char
	2.10.14. ble_gatts_list_desc

	2.11. BLE gattc API
	2.11.1. gattc message type
	2.11.2. ble_gattc_start_discovery
	2.11.3. ble_gattc_svc_reg
	2.11.4. ble_gattc_svc_unreg
	2.11.5. ble_gattc_read
	2.11.6. ble_gattc_write_req
	2.11.7. ble_gattc_write_cmd
	2.11.8. ble_gattc_write_signed
	2.11.9. ble_gattc_mtu_update
	2.11.10. ble_gattc_mtu_get
	2.11.11. ble_gattc_find_char_handle
	2.11.12. ble_gattc_find_desc_handle

	2.12. BLE export API
	2.12.1. ble_sw_init
	2.12.2. ble_sw_deinit
	2.12.3. ble_stack_task_resume
	2.12.4. ble_local_app_msg_send
	2.12.5. ble_app_msg_hdl_reg
	2.12.6. ble_sleep_mode_set
	2.12.7. ble_sleep_mode_get
	2.12.8. ble_core_is_deep_sleep
	2.12.9. ble_modem_config
	2.12.10. ble_ work_status_get
	2.12.11. ble_internal_encode
	2.12.12. ble_internal_decode

	3. Application examples
	3.1. Scan
	3.2. Advertising
	3.3. GATT server application
	3.3.1. Adding a service
	3.3.2. Service attribute database
	3.3.3. Service attribute read and write

	3.4. BLE distribution network
	3.4.1. Process of Blue courier
	3.4.2. GATT description
	3.4.3. Advertising data
	3.4.4. Frame format
	flag
	sequence
	opcode
	crc

	4. Revision history

