GigaDevice Semiconductorinc.

GD32VW553 Quick Development Guide

Application Note
AN154

Revision 1.3a

(May 2025)

c, AN154

GigaDevice GD32VW553 Quick Development Guide
Table of Contents
Table Of CONLENTS..........ooooiiii e e e eeeeas 2
LiSt Of FIQUIES ... e e s e e e e s nnreeeeeeens 4
LisSt OF TABIES ... e e 6
1. Introduction to development boardco i, 7
1.1. Picture of real development boardcccooii i, 7
1.1.1. The START developmentboard......................cooiiiii e, 7
1.1.2. The EVAL development board..................cooiiiiii 7
1.2, BOOE MO o e 9
1.3. Debugger iNterface............ ... 9
1.4. DoWNIoad iNterfaceooovuiiiiiiiii e 10
1.5, VIEWING IOQ ... oo et e e e 10
2. Building development environment..................ocoiii e 1
2.1. Installation of GD32 Embedded Buildercccooooiiiiiin 1"
2.2. Installation of SEGGER Embedded Studio IDE.............................coiiiiiin, 1"
3. What developers must KNOW................ooooiiiiiiiiiiiiii e 12
3.1. SDKexecution Program grOUPcoieeeeeiuuuuuneeeeeeiinnaaeeeeeennnnaaeeeeersnnaaaeeeeesnnnnns 12
3.2, SDK configuration.............coooiiiiiiiiiiiiii e 12
3.2.1. Configuration of Wireless MOAUIEcouiiiuiiiiiii e 12
3.2.2. SRAM LAY OULt 13
3.2.3. I] o =)o | PP 13
3.2.4. Firmware VErsion NO...... ... 13
3.2.5. APP CONfIQUIAtIONeiice e e e e e e e 14
3.2.6. Configuration SEIECHON cieu i 15
3.3. Correct log example...........cooooiiiiiiiiiii 16
4. GD32 Embedded Builder IDE project..............cccoouiiiiiiiiiiiiiiie e 17
4.1. Opening the Project groUP...........coooiiiiiiiii i 17
4.2, Compilation ... 20
4.3. Download fIrmWare ... 23
T TR U S 1 S B 41V Y @70 o) UU P UUPTRP 23
4.3.2. Use afterbuild.bat for downloading......... ..o 23
4.3.3. Using J-Flash Lite for downloadingcouuieiiiiiiiiiii e 24
4.4, DebUGQING. ..o e 25

c, AN154

GigaDevice GD32VW553 Quick Development Guide
5. SEGGER Embedded Studio IDE project..............ccocceiiiiiiiiiiiiee e 28
0t I 0 1o T-Y o N o o] =Y e =P 28
5.2, Compilation ..o 29
5.3. Download firMWareccooiiiiiiiiiii e 31
5.4, DebUgQing.........cooiiiiiiiii e 32
B. P AQ .. 34
70 I (o T 4 =T L= = o o1 34
6.2. Code running iNn SRAM ... e 34
6.3. How to select different project configurations during debugging......................... 34
7. ReVISION NISTOIYooiiii e 37

c, AN154

GigaDevice GD32VW553 Quick Development Guide

List of Figures

Figure 1-1. The picture of the START developmentboardcccooiiiiiiii e, 7
Figure 1-2. The picture of the EVAL developmentboard......................ccooiiiiiiii e, 8
Figure 1-3. Development Board Type Configuration.....................coooiiiiii i, 9
Figure 1-4. List of devicesand drivers..................ooiiiiiii i 10
Figure 1-5. Configuration of serial Port...............coooiiii i 10
Figure 2-1 The Directory Structure of GD32 Embedded Builder..................ccoooiiiiii, 1"
FIGUIE 3-1. BOOt PrOCESSouiiiiiiiii et et e e e et e e e e e e e e e et neanaaas 12
Figure 3-2. Configuration ofwireless module.....................ooiiiiii i 12
Figure 3-3. SRAM JaYOUL........ ..ot e e e et e eaeees 13
Figure 3-4. FLASH IaYOUL ... e e e e eees 13
Figure 3-5. Firmware version NO..............ooouiiiiii e 14
Figure 3-6 BLE library selecCtion........... ... 14
Figure 3-7. Project boot information................ooii 16
Figure 4-1. SDK AireCOrY..........ooui i ettt e e et e e e et e e aa e 17
Figure 4-2. Starting GD32 Embedded BuilderIDE...................ccooiiiiiiii e 17
Figure 4-3. Open Projects from file System ... 18
Figure 4-4. Selecting MBL projectpath ... 18
Figure 4-5. MBL project interface.o 19
Figure 4-6. Selecting MSDK project path.................coooiiiiiiiiii e 19
Figure 4-7. MSDK and MBL project interfacesccoooviiiiiiiii e 20
Figure 4-8. Properties of the Project ... 20
Figure 4-9. Compiling the MBL Project...............coooiiiiiiiiiii e e 21
Figure 4-10. MBL compilation result.................oooiiiiiii 21
Figure 4-11. target configuration selection...................coo 22
Figure 4-12. MSDK compilation result.................oooiiii 22

c, AN154

GigaDevice GD32VW553 Quick Development Guide
Figure 4-13. IMages OULPULcoouiiiiiiii ettt et e 23
Figure 4-14 Configure image automatic downloading..................ccooiiiiiiii 23
Figure 4-15 JFlashLite Configuration..................ooiiiiiiiiii e 24
Figure 4-16 J-Flash Programming Interface...................ooiiii e 24
Figure 4-17. Opening the Debug Configuration option......................c.cooiiii i 25
Figure 4-18. MSDK debug configurationooiiiiiiiiii e 26
Figure 4-19. MSDK Debugging Configuration Interface with openocd........................cooiiii, 26
Figure 4-20. MSDK debug interfaceooouiiiiii e 27
Figure 5-1. MBL SES Project ProjectInterface.................oooii 28
Figure 5-2. MSDK SES ProjectInterface..............oooiiiiiiiiii e 29
Figure 5-3. nuclei toolchain content...................o 29
Figure 5-4. Compiling the MBL Project................ocoiiiiiiiiiii e 30
Figure 5-5. MBL compilation result...................ooiiii 30
Figure 5-6. Compile MSDK ProjecCt...........oouniiiiiiiiii e 30
Figure 5-7 MSDK Project Configuration Options................cccooiiiiiiiiii 31
Figure 5-8 MSDK compilation result............ ..o 31
Figure 5-9. Images OUIPUL. ... e e 31
Fogure 5-10 SES IDE image download.................c.oiiiiiiiiiiiiiii e 32
Figure 5-11. MSDK SES Project Configuration Interface.....................ccoocii i 33
Figure 5-12. SES IDEDebug INterface..............oooiiiiiiiii 33
Figure 6-1 Select Project Configuration for Debugging................ccoooiiiiiiiiiii 35

c, AN154

GigaDevice GD32VW553 Quick Development Guide
List of Tables

B =101 (= o IR = 7o Yo X 4 11 Lo Yo = YRR 9

Table 7-1. ReVISION NISEOKY..... ... et 37

e

GigaDevice

AN154
GD32VW553 Quick Development Guide

1.

1.1.

11.1.

11.2.

Introduction to development board

Picture of real development board

The START development board

The START development board consists of a baseboard and a module equipped with the
GD32VW55x Wi-Fi+BLE chip.

Figure 1-1. The picture of the START development board

GD32VW553
A

GD32VW553

D326505 7 : > [1
° J3TAGO ﬁ * U + USB disk
) — + GDLINK

Mainly focus on the following parts of the development board, which have been marked in the
Figure 1-1. The picture of the START development board.

Boot mode (Boot PIN);

Power supply port (POWER);

View log (UART);

Debugger interface (JLink, or GDLink);
Reboot (Reset Button).

The EVAL development board

The EVAL development board consists of a baseboard and a module equipped with the
GD32VW55x Wi-Fi+BLE chip. The baseboard lead out many peripheral test ports, such as
I2C, IFRP, ADC and so on.

e AN154

GigaDevice GD32VW553 Quick Development Guide
Figure 1-2. The picture of the EVAL development board
GD32VW553
R

RESET

BUTTON
1 GD32VW553
JTAG
BOOT PIN

POWER
+ GDLINK

Dewelopers mainly focus on the following parts of the development board, which have been
marked in the Figure 1-2. The picture of the EVAL development board.

Boot mode (Boot PIN);

Power supply port (power supply);
View log (UART);

Debugger interface (JLink, or GDLink);
Reboot (Reset Button).

For the START dewvelopment board and the EVAL development board, the SDK configuration
is different and different macros need to be selected to enable them. As shown in Figure 1-3.
Development Board Type Configuration, the SDK selects the START development board
configuration as the default. The configuration file is GD32VW55x_RELEASE/config/
platform_def.h.

°

AN154

GigaDevice GD32VW553 Quick Development Guide
Figure 1-3. Development Board Type Configuration
Fine PLATFORM BOARD 32VWS5X START
= PLATFORM_BOARD 32VWSS5X EVAL
= PLATFORM_BOARD 32VWSS5X F527
ONFIG_PLATFORM_ASIC
ne - CONFIG_BOARD PLATFORM_BOARD 32VWSSX START
1.2. Boot mode
GD32VW55x can boot from ROM, FLASH, or SRAM.
The level selection of the two pins BOOTO and BOOT1 in the BOOT SWD box of the
development board determines the boot mode. See Table 1-1. Boot mode. For more
instructions on the boot mode, please refer to the document "GD32VW55x_User_Manual”.
Table 1-1. Boot mode
EFBOOTL K BOOTO | BOOT1 EFSB Boot address Boot area
0 0 - 0 0x08000000 SIP Flash
0 0 1 0x0BF46000 secure boot
0 1 0 - 0x0BF40000 Bootloader/ROM
0 1 0x20000000 SRAM
1 0 - 0 0x08000000 SIP Flash
1 0 1 0x0BF46000 Secure boot
1 1 0x0BF40000 Bootloader/ROM
1.3. Debugger interface

For START development board, it comes with a GDLink(GD32E505) debugger that can be
used with OpenOCD. Can also use an external debugger (GDLink or JLink) at the JTAG
interface of the board for debugging and download. The GD32E505 chip also integrates the
UART function, so only one USB cable is required to supply power, debug, and view the log.
Connect the pins JCLK, JTWS, JTDO and JTDI to the middle four pins through jumper caps,
and then download and debug the code through DAPLINK. Figure 1-1. The picture of the
START development board shows how to debug through DAPLINK.

For EVAL development board, GDLink or JLink debugger can be used for debugging and
download.

It should also be noted that the GD32VW55x supports cJTAG and JTAG but does not support
the SWD debugging interface.

°

GigaDevice

AN154
GD32VW553 Quick Development Guide

1.4.

1.5.

Download interface

For the START dewelopment board, in addition to using the GDLink debugger or JLink
debugger mentioned in the previous section for firmware downloading, if debugging
functionality is not required and only firmware downloading is needed, the firmware can also
be downloaded using a USB drive copy method. Connect the development board to a
computer via a USB cable, as shown in Figure 1-4. List of devices and drivers, under the
devices and drives list as the GigaDevice drive. Copy the "image-all.bin" file (refer to
subsequent sections) into the GigaDevice drive to complete the FLASH programming of the
GD32VW55x chip.

Figure 1-4. List of devices and drivers

FIREE (D2) FiEEE (B) GigaDevice (F:)
] []
- 129 GB AT, it 244 GB -y 130 GREIF, 221 GB 63.9 MB AT, t63.9 MB

For EVAL development board, GDLink or JLink debugger can be used for download. Dragging
into the USB disk is not supported.

Viewing log

Connect a MicroUSB cable to the START development board, use a serial port tool on the
PC, and configure it according to the parameters in Figure 1-5. Configuration of serial port
and connect to the board. After that, use the serial port to output logs.

Figure 1-5. Configuration of serial port

Serial Settings
COM: COM21 W
Baudrate: 115200 w
Data Bits: 8 v
Parity: Mone w
Stop Bits: 9 w
Open

10

°

AN154

GigaDevice GD32VW553 Quick Development Guide
2. Building development environment
Build a development environment before compiling and downloading the firmware.
The development tool currently used is GD32 Embedded Builder and SEGGER Embedded
Studio IDE.
2.1. Installation of GD32 Embedded Builder
The GD32 Embedded Builder can select GD32VW5 at website:
https://gd32mcu.com/cn/download to download. The uncompress downloaded files is as
Figure 2-1 The Directory Structure of GD32 Embedded Builder shows. The build tool, tool
chain, openocd, jlink, and other related tools have all been placed in the Tools directory.
Figure 2-1 The Directory Structure of GD32 Embedded Builder
v | | GD32EmbeddedBuilder v1.4.14.29824 = h
examples configuration
v GD32EmbeddedBuilder Doc
configuration licenses
Doc pe
licenses plugins
p2 =) artifacts.oml
lugins [changelog.xt
pha [di] GD32EmbeddedBuilder.exe
v L Teoals | GD32EmbeddedBuilderini
Build Toals [GD32EmbeddedBuilderc.exe
GDLinkGDEBEServer [E] headless-build.bat
GMU Tools ARM Embedded & notice.html
J-Link [readme.txt
LLVM
nuclei_riscv_newlibc_prebuilt win32_2022.04
QpenOCD
RISC-V Embedded GCC
2.2. Installation of SEGGER Embedded Studio IDE

Please \isit the website: https://wiki.segger.com/GD32V for how to get the SEGGER
Embedded Studio IDE and License Activation Key.

1

https://gd32mcu.com/cn/download
https://wiki.segger.com/GD32V

°

GigaDevice

AN154
GD32VW553 Quick Development Guide

3.

3.1.

3.2.

3.2.1.

What developers must know

Before getting started with development, first understand the members of the SDK execution
program group, how to correctly configure the SDK.

SDK execution program group

SDK will finally generate two main execution programs: MBL (Main Bootloader) and MSDK
(Main SDK), which will eventually be downloaded to FLASH to run. After power-on, the
programs will boot from Reset_Handler of MBL, and then jump to the MSDK main program
torun, as shown in Figure 3-1. Boot process.

Figure 3-1. Boot process

MBL > MSDK

SDK configuration

Configuration of wireless module

The configuration file is GD32VW55x_RELEASE /config/platform_def.h, whose main content
is as shown in Figure 3-2. Configuration of wireless module.

Figure 3-2. Configuration of wireless module

B In the case of BLE/ WiFi combo mode, please enable:
- #define CFG_WLAN_SUPPORT
- #define CFG_BLE_SUPPORT

B In the case of BLE only, please only enable:
- #define CFG_BLE_SUPPORT

B In the case of WiFi only, please only enable:
- #define CFG_WLAN_SUPPORT

B To disable the wireless module, please disable all

12

°

AN154

GigaDevice GD32VW553 Quick Development Guide

3.2.2. SRAM layout
The configurationfileis GD32VW55x_RELEASE\config\config_gdm32.h. Modify the following
macro definition (as Figure 3-3. SRAM layout shows) values to plan the SRAM space
occupied by the executable program segments MBL and IMG. These values are offset
addresses, and the base address is defined at the beginning of the file.
The line marked "Keep unchanged!" cannot be modified; otherwise, the operation of the
MbedTLS code in the ROM will be affected.
Figure 3-3. SRAM layout

#define 0x300
#define Ox200

For the planning of SRAM space in each executable program segment, refer to the .Id file
under the corresponding project, such as MBL\project\eclipse\mbl.ld and
MSDK\plfiriscvhenv\gd32wv55x.1d.

3.2.3. FLASH layout
The configurationfileis GD32VW55x_RELEASE\config\config_gdm32.h. Modify the following
macro definition(as Figure 3-4. FLASH layout shows) values to plan the FLASH space
occupied by the executable program segments MBL and MSDK. These values are offset
addresses, and the base address is defined at the beginning of the file.
The line marked "!Keep unchanged!" cannot be modified; otherwise, the operation of the
project will be affected.
Figure 3-4. FLASH layout
#de Bx280
oxe
#
#
#
#
#
#
For the planning of FLASH space in each executable program segment, refer to the .Id file
under the corresponding project, such as MBL\project\eclipse\mbl.ld and
MSDK\plfirischenvgd32w55x.1d.

3.24. Firmware version No.

The configurationfile is GD32VW55x_RELEASE\config\config_gdm32.h. Modify the following
13

°

AN154

GigaDevice GD32VW553 Quick Development Guide
macro definition values showed in Figure 3-5. Firmware version No. to specify the version
No. In addition, the macro RE_IMG_VERSION is used in Securt Boot to determine the
firmware version.
MBL only supports local upgrade, while IMG supports online upgrade. The version No.
released by the SDK is consistent with RE_IMG_VERSION.
Figure 3-5. Firmware version No.

efine RE_MBL_VERSION 8x81600003
#define RE_IMG_VERSION Bx01008003
3.25. APP configuration

The configuration file is GD32VW55x_RELEASEWMSDK\app\app_cfg.h. Choose whether to
enable some applications, such as ATCMD, Alibaba Cloud, MQTT, COAP and so on.

By modifying the macro CONFIG_BLE_LIB in app_cfg.h, the BLE library can be switched.
When CONFIG_BLE_LIB is set to BLE_LIB_MIN (as shown in Figure 3-6 BLE library
selection), the project compilation will use libble.a, and the header file will include
ble_config_min.h. When CONFIG_BLE LIB is setto BLE LIB_MAX the project compilation
will use libble_max.a, and the header file will include ble_config_max.h.

Figure 3-6 BLE library selection
efine BLE_LIB_MIN

e BLE_LIB_MAX

#define CONFIG_BLE_LIB BLE_LIB_MIN

The features supported by libble.a are as follows:
1. Supports peripheral
2. Supports a single connection link
3. Supports server
4. Supports host and controller
5. Supports EATT
6. Supports WeChat applet WiFi provisioning
Based on libble.a, libble_max.a additionally supports the following features:
1. Supports central
2. Supports four connection links

3. Supports client

14

°

AN154

GigaDevice GD32VW553 Quick Development Guide
4. Supports periodic advertising
5. Supports PHY updates
6. Supports power control
7. Supports BLE ping
8. Supports secure connection
3.2.6. Configuration Selection

The main project-MSDK, supports multiple configurations, with msdk selected by default.
Additional options include msdk_ffd, msdk_mbedtls 2.17.0, msdk_rtthread, and
msdk_threadx.

The main difference between msdk_ffd and msdk lies in the WiFi connection management
library included in the project. The msdk includes libwpas, which is more streamlined and
consumes fewer memory resources. The msdk_ffd includes wpa_supplicant, which is more
comprehensive and general-purpose but has a larger codebase and consumes more memory
resources. Additionally, msdk_ffd includes libble_max.a by default, enabling more BLE
features. Of course, msdk can switch between libble.a and libble_max.a by modifying the
configuration.

The main difference between msdk_mbedtls 2.17.0 and msdk lies in the version of the
MbedTLS library included in the project. The msdk includes MbedTLS 3.6.2, which runs in
FLASH. The msdk_mbedtls_2.17.0 includes MbedTLS 2.17.0, with most of its content running
in ROM. If strict security requirements are needed, it is recommended to choose msdk. If
FLASH space is limited, itis recommended to choose msdk_mbedtls 2.17.0

The main difference between msdk_rtthread and msdk lies in the RTOS used in the project.
The msdk uses FreeRTOS. The msdk_rtthread uses RT-Thread.

The main difference between msdk_threadx and msdk also lies in the RTOS used in the
project. The msdk uses FreeRTOS. The msdk_threadx uses ThreadX

* msdk
FreeRTOS + Libwpas.a + libble.a + MbesTLS 3.6.2
+ msdk_ffd
FreeRTOS + wpa_supplicant.a + libble_max.a + MbesTLS 3.6.2
*+ msdk_mbedtls_2.17.0
FreeRTOS + Libwpas.a + libble.a + ROM MbesTLS 2.17.0
* msdk_rtthread

RTThread + Libwpas.a + libble.a + MbesTLS 3.6.2
15

‘, AN154

GigaDevice GD32VW553 Quick Development Guide

* msdk_threadx
Threadx + Libwpas.a + libble.a + MbesTLS 3.6.2

For details on how to make configuration selection for actual use, see the Compiling MSDK
Projects section in subsection_4.2Compilation.

3.3. Correctlog example

After the firmware group (MBL+MSDK) is successfully downloaded, open the serial port toodl,
and press the Reset button on the development board. The startup information is shown in
Figure 3-7. Project boot information. If an exception occurs, please check 6FA Qfor help.

Figure 3-7. Project boot information

ALW: MBL: First print.

AlLlW: MBL: Boot from Image ©.

ALlW: MBL: Validate Image B OK.

ALW: MBL: Jump to Main Image (©x83802000).
=== RF initialization finished ===

SDK Version: v1.8.3a-86d78d@58d779fad
Build date: 2825/85/14 16:29:11

=== WiFi calibration done ===

PHY initialization finished ===

local addr: AB:89:67:45:23:81, type Bx0
BLE Adapter enable complete ===

|||

L

n rm

16

GigaDevice

AN154
GD32VW553 Quick Development Guide

4.

4.1.

GD32 Embedded Builder IDE project

This chapter introduces how to compile and debug the SDK under Embedded Builder IDE.

The project group consists of two projects: MBL/MSDK. MSDK includes Wi-Fi protocadl stack,
BLE protocol stack, peripheral drivers, applications, etc. The MBL is mainly responsible for
selecting the correct MSDK firmware from the two (current firmware and OTA firmware) to

run.

Opening the project group

Check the SDK directory GD32VW55x_RELEASE, as shown in Figure 4-1. SDK directory.

Figure 4-1. SDK directory

config

docs

MEBL

MSDK
ROM-EXPORT

scripts

o
[release notes.txt

To start the IDE, double-click Embedded Builder.exe in the Embedded Builder directory, and
select the SDK directory GD32VW55x_RELEASE as the workspace, and then click the
launch button, as shown in Figure 4-2. Starting GD32 Embedded Builder IDE.

Figure 4-2. Starting GD32 Embedded Builder IDE

GD Eclipse Launcher

Select a directory as workspace

Embedded Builder uses the workspace directory to store its preferences and development artifacts.

Workspace: | Di\risc-\GD32VW55x RELEASE ~ Browse...

[[JUse this as the default and do not ask again

} Recent Workspaces

B |mport the MBL project

In the File menu, click Open Projects from file System, as shown in Figure 4-3. Open
Projects from file System.

17

GigaDevice

AN154
GD32VW553 Quick Development Guide

Figure 4-3. Open Projects from file System
File Edit Source Refactor Mavigate Search Project
New Alt+Shift+M »

Open File...
., Open Projects from File System...

Recent Files »

Close Ctrl+wW

Close All Ctrl+Shift+W

Save Ctrl+5
Save As...

Save All Ctrl+5hift+5
Revert

Move...

Rename... F2

Refresh F5

LTy

Convert Line Delimiters To »
Print... Ctrl+P

Import...

G E

Export...
Properties Alt+Enter

Switch Workspace »
Restart
Exit

Select the project path GD32VW55x_RELEASE\MBL\project\eclipse, as shown in Figure
4-4. Selecting MBL project path, and click Finish.

Figure 4-4. Selecting MBL project path

[impart Projects from File System or Archive m] x
Import Projects from File System or Archive
_4L

This wizard analyzes the content of your folder ar archive file to find projects and import them in the IDE. . 4

Import source: | Di\risc-\GD32VWS5x% RELEASE V1.0.3\MBL\project\eclipse v‘ | Directory.. || Archive...

type filter text Select All

Folder Import as
. i X Deselect All
eclipse Eclipse project

1 of 1 selected

[Hide already open projects
[Close newly imported projects upon completion

Use installed project configurators to:
Search for nested projects
Detect and configure project natures

Working sets
[[1Add project to working sets New...

Select...

Show other specialized impart wizards

() < Back Next > Finish Cancel

Close the welcome interface, and the MBL project is shown as Figure 4-5. MBL project
interface shows.

18

°

AN154
GigaDevice GD32VW553 Quick Development Guide

Figure 4-5. MBL project interface

File Edit MNavigate Search Project Window Help
MR B e D&M CP -
5 Praoject Explorer I = g
=& v

v 25 MBL

i Includes

[mainboot

n platform

[mbl.id

B |mport the MSDK project

In the File menu, click Open Projects from file System, Select the project path
GD32VW55x_RELEASEWMSDK\projects\eclipse\msdk, as shown in Figure 4-6. Selecting

M SDK project path, and click Finish.

Figure 4-6. Selecting MSDK project path

[JClose newly imported projects upon completion

Use installed project configurators to:
Search for nested projects

Detect and configure project natures
Working sets

[]Add project to working sets

[@ Impart Projects from File System or Archive [m| X
Import Projects from File System or Archive
P
This wizard analyzes the content of your folder or archive file to find projects and import them in the IDE. /
Import source: | Di\risc-\GD32VW55x_RELEASE V1.0.3\MSDK\projectsieclipseimsdk v| | Directory... | Archive...
type filter text Select All
Folder Impaort as :
. . Deselect All
msdk Eclipse project

1 of 1 selected

[JHide already open projects

New...

Select...

Show other spedialized import wizards

< Back Next = Finish Cancel

Viewthe MSDK and MBL project interfaces, as shown in Figure 4-7. MSDK and M BL project

interfaces.

19

e

GigaDevice

AN154

GD32VW553 Quick Development Guide

4.2.

Figure 4-7. MSDK and MBL project interfaces

5 Project Explorer &2

~ == MBL
[l Includes
(& mainboot
&p platform
[mblid

~ (2% MSDK
[p Includes
(& alicloud
7 app
&p ble_app
2y ble_profile
¢ coap
= FatFS
&R Iwip
(& mbedtls
i os
& pif
(e tuya
(B wtil
(7 wifi_manager
2% azure

File Edit MNawigate Search Project Window Help
[~ Bl @HMICIH- PG ooy~

Compilation

B Check the configuration of the project compilation tool

Right-click on the project, click on properties, select C/C++ Build -> Settings in order, and on
the tab click on toolchain settings., as shown in Figure 4-8. Properties of the project.

Figure 4-8. Properties of the project

GD Properties for MBL

type filter text
Resource
w C/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Editor
XL C/C++ Compiler
C/C++ General
Project Natures
Project References
Refactoring History
Run/Debug Settings

~
@/.

Settings

Configuration: |Debug [Active]

) Tool Settings Toolchain Settings Target Settings # Build Steps

Toolchain name: |GNU MCU RISC-V GCC

~ | | Manage Configurations...

Build Artifact Binary Parsers @ Error Parsers

Toolchain Prefix: | riscv-nuclei-elf-

ToolChain Path: | Mools\nuclei_riscv_newlibc_prebuilt_win32_2022.04\gcc\bin

‘ Browse

Build Tool Path: |‘\Toﬂ\s\Eui|d Tools\2.10-20180103-191%\bin

‘ Browse

Apply and Close

Cancel

B Compile the MBL project
Right-click the project, and click Build Project, as shown in Figure 4-9. Compiling the MBL

project.

20

°

GigaDevice

AN154

GD32VW553 Quick Development Guide

Figure 4-9. Compiling the MBL project

T35 Project Explorer &%

a .[DC N-ru
New S

Go Into
Open in New Window

[§ Copy Ctrl+C
Paste Ctrl+V

= H Delete Delete

& &P B #E

Source »

¢
0
= [l

Move...

B

Rename... F2

Erase

E IS

Download

Migrate to GD Project
Import...

Export..

[

Build Project
Clean Project
Refresh F5
Close Project

T ST SV ST T T ST ST ST Y
' |

Close Unrelated Project

Build Configurations »
Build Targets »

Index »

Run As >
Debug As »
Profile As »

#F 0

Team »
Compare With »

Restore from Local History...

Configure »

The compilation resultis as shown in Figure 4-10. MBL compilation resullt.

Figure 4-10. MBL compilation result

| Tasks | & Console 2
CDT Build Console [MBL]

Invoking: @D RISC-V MCU Flash Image(Hex)

riscv-nuclei-elf-objcopy -0 ihex "MBL.elf™ "MBL.hex"

Invoking: @D RISC-V MCU Flash Image(Bin)

riscv-nuclei-elf-objcopy -0 binary “"MBL.elf" "MBL.bin"

Invoking: GD RISC-V MCU Listing

Invoking: GD RISC-V MCU Print Size

Finished building: MBL.hex

riscv-nuclei-elf-objdump --source --all-headers --demangle --line-numbers --wide "MBL.elf" > "MBL.lst"
Finished building: MEL.bin

riscv-nuclei-elf-size --format=berkeley "MBL.elf"

text data bss dec hex filename
12926 4288 17a7e 34196 8594 MBL.elf

Finished building: MBL.siz
Finished building: MBL.lst

14:19:081 Build Finished. @ errors, @ warnings. (took 7s5.481ms)

After the compilation is complete, the script MBL\project\mbl_afterbuild.bat will be
automatically called to generate mbl.bin and copied to the directory \scripts\images.

21

°

GigaDevice

AN154
GD32VW553 Quick Development Guide

B Compile the MSDK project

Right-click the project, and click Build Configurations—>Set Active—><target configuration>
in order. as shown in Figure 4-11. target configuration selection, the default target project
is msdk.

Figure 4-11. target configuration selection

v =5 ManK
~ New »

Go Into
Open in New Window

Copy Ctrl+C
aste A
Delete Delate

Source »

Rename... F2

&2 Erase

@ Download

T ox

Migrate to GD Project
Import...

Export...

Build Project

Clean Project

Refresh F5
Close Project

Close Unrelated Project

E= Outli B8
ki outlis Build Configurations » Set Active ¥ & 1 msdk (default: msdk # freertos + mbedtls-3.6.2)
Build Targets » Manage... 2 msdk_ffd (full function device)
Index » Build Al 3 msdk_mbedtls_2.17.0 (msdk + freertos + mbedtls-2.17.0(in ROM))
O Runas : Clean Al 4 msdk_rtthread (msdk with rtthread os)
5 Debug As » Build Selected... 5 msdk_threadx (msdk with threadx os)

Right-click the project again, and click Build Project, The compilation result is as shown in
Figure 4-12. M SDK compilation resullt.

Figure 4-12. MSDK compilation result

[#! Problems || Tasks | & Console 2 | [C Properties | 5 Progress
CDT Build Console [MSDK]

Script processing completed.

Inveking: G0 RISC-V MCU Flash Image(Hex)

riscv-nuclei-elf-objcopy -0 ihex "MSDK.elf" "MSDK.hex"

Inveking: G0 RISC-V MCU Flash Image(Bin)

riscv-nuclei-elf-objcopy -0 binary "MSDK.elf"™ "MSDK.bin"

Inveking: @D RISC-V MCU Listing

Inveking: G0 RISC-V MCU Print Size

Finished building: MSDK.hex

riscv-nuclei-elf-ocbjdump --source --all-headers --demangle --line-numbers --wide "MSDK.elf™ > "MSDK.1lst"
Finished building: MSDK.bin

riscv-nuclei-elf-size --format=berkeley "MSDK.elf"

text data bss dec hex filename
12316638 1144 183276 1336888 146318 MSDK.elf

Finished building: MSDK.siz

B Images generated by SDK

After MSDK is compiled, it will call MSDK\projects\image_afterbuild.bat to generate image-
ota.bin and image-all.bin, and copy the generated bin files to \scripts\images, as shown in
Figure 4-13. Images output.

22

°

AN154

GigaDevice GD32VW553 Quick Development Guide
image-ota.bin is the bin file generated by MSDK project, which can be used for OTA upgrade.
image-all.bin is the combination of MBL(mbl.bin) and MSDK(image-ota.bin), the firmware can
be used for production, download into FLASH and run.

Figure 4-13. Images output
= EEEE: e e
Q) image-allbin 426 BIN Iz 783 KB
Q) image-ota.bin 4:26 BIN 3% 748 KB
i mbl.bin 419 BIN 3T 7 KB
4.3. Download firmware
4.3.1. USB Drive Copy
As shown in1.4Download interface, copying the image-all.bin file from
GD32VW55x_RELEASE\scripts\images to the Gigadevice drive. This functionality is only
supported on the START development board when using the onboard GDLink connection.
4.3.2. Use afterbuild.bat for downloading

The project supports automatically downloading the image after compilation by invoking a
script through afterbuild. The script file is MSDK\projects\image_afterbuild.bat.

At the end of image_afterbuild.bat, there is a section of code configured for automatic image
downloading, as shown in Figure 4-14 Configure image automatic downloading.

Figure 4-14 Configure image automatic downloading
OPENOCD="%0

LINKCFG=".."

This segment of code utilizes OpenOCD with Jlink/GDLink to perform downloading. By
configuring OpenOCD to use different .cfg files, users can choose whether to download via
Jlink or GDLink.

When using GDLink to connect the computer and development board, set LINKCFG to
openocd_gdlink.cfg. For connections via Jlink, set LINKCFG to openocd_jlink.cfg.

After compilation, Afterbuild will invoke this script to execute the configured commands and
complete the corresponding image download (please uncomment the lines within the red box
from the figure; this feature is disabled by default).

23

GigaDevice

AN154
GD32VW553 Quick Development Guide

4.3.3.

Using J-Flash Lite for downloading

When using Jlink for debugging and firmware downloading, you canfind JFlashLite.exeinthe
directory: GD32EmbeddedBuilder_v1.4.14.29824\Tools\J-Link. Double-click to open
JFlashLite and configure it as shown in Figure 4-15 JFlashLite Configuration.

Figure 4-15 JFlashL.ite Configuration

3| SEGGER J-Flash Lite V8.10

Target device

£D32VWE5IHMGT | [

Target interface Speed

JTAE hd 8600 w | kHz

Flash banks

Bazeaddr Name Loader

[~]02x05000000 Flash |Default =

Set the Target device to GD32VW553xxxx, choose the Target interface as JTAG (cJTAG can
also be selected, but itis slower), and set the Speed to 9600 kHz. Then click OK.

In the opened interface, as shown in Figure 4-16 J-Flash Programming Interface, select
the Data File as the compiled image-all.bin or image-ota.bin (stored in the directory
GD32VW55x_RELEASE_V1.0.xx\scripts\images after compilation).

When selectingimage-all.bin, set the Prog. Addr. on the right to 0x08000000.
When selectingimage-ota.bin, set the Prog. Addr. on the right to 0x0800A000.

Once the settings are complete, click"Program Device" and wait for the progress bar tofinish,
which indicates the completion of the programming process.

Figure 4-16 J-Flash Programming Interface

2! SEGGER J-Flash Lite V8.10

File Help
Target
Device Interface Speed
|epazvwssameeT | | [rmae | [e800 kue
pata File (bin / hex / mot / srec / ...) Prog. addr.
Ecripts\images\imase-all bin| o |ox08000000 Erzes Eie
Program Device
Log

24

°

GigaDevice

AN154
GD32VW553 Quick Development Guide

4.4,

44.1.

Debugging
Currently, both the START dewvelopment board and the EVAL development board feature

onboard GDLink, and an external Jlink can also be used for debugging.

The debugging process is described below, and the default project configuration is msdk. ff
you need to switch to another project configuration, please refer to section 6. 3Select different

project configurations during debugging for selecting different project configurations for
debugging.

Debugging configuration

Right-click on the MSDK project and click Debug As->Debug Configurations, as shown in
Figure 4-17. Opening the Debug Configuration option.

Figure 4-17. Opening the Debug Configuration option

v 125 MSC*

*;g-. Bi New ¥
il In Go Into
(2l Open in New Window
n al
Copy Ctrl+C
7 bl =
(]) .
Bl Paste Ctrl+V
(£}
E[: cc % Delete Delete
= Fe Source >
E w Move...
g m Rename... F2
= m
E_Z & Erase
% m} o ,_\ | d
s pl €Y D(ijn oa ‘
G tu Migrate to GD Project
g ut 21 Import...
Epw il Export..
& = Build Project
Clean Project
= Outline Refresh F5 = g || Tasks | & Console 3
e Close Project CDT Build Console [MSD
Close Unrelated Project
Build Configurations >
Build Targets >
Index >
©Q RunAs »
4% Debug As > @ 16D
Profile As > [E] 2 Local C/C++ Application
= ’ Debug Configurations...
Compare With >

—7

Double-click "GDB General Debugging" on the left, and a Debug configuration will
automatically be created, as shown in Figure 4-18. MSDK debug configuration. Here, the
c/c++ application field has automatically selected msdk\MSDK .elf, which points to the ELF file
generated by the configuration to be debugged.

You can check or uncheck “Enable/Disable auto build” to choose whether or not to compile
the project before debugging.

25

e

GigaDevice

AN154
GD32VW553 Quick Development Guide

4.4.2.

Figure 4-18. MSDK debug configuration

GD Debug Configurations

Create, manage, and run configurations

G =] x' B3~ Name: |MSDK msdk |

type filter text | Main| Debugger| SVD
[T] C/C++ Application
[T] C/C++ Attach to Applicatic
[£] C/C++ Postmortem Debug |m5dk\MSDK‘e|{ ‘

C/C++ Application:

[£] C/C++ Remote Applicatior Variables... Search Project... Browse...
v [@i] GDB General Debugging .
{77 MSDK msdk Project
[€] GDB Hardware Debugging |MSDK Browse...

¥ Java Applet
[T Java Application

Build (if required) before launching

Build Configuration: |Select Automaticall w
i Launch Group Build Configuration: Iy
B Launch Group (DBPrelcatec () Enable auto build () Disable auto build
E Remote Java Application X .
(®) Use workspace settings Configure Workspace Seftings...
< >
Revert Apply

Filter matched 12 of 12 items

Debugging using GDLink

As shownin Figure 4-19. M SDK Debugging Configuration Interface with openocd, switch

the GDB Server to OpenOCD in the Debugger interface. Additionally, specify the Config
Options within the red box as shown in the figure. Afterward, click "Debug" to start debugging.

The debugging interface is displayed in Figure 4-20. MSDK debug interface.
Figure 4-19. MSDK Debugging Configuration Interface with openocd

GD Debug Configurations

Create, manage, and run configurations ;
€ [Main]: Program not specified

FeREX BV~ Name: | MSDK msdk |

[type fiter text ||| [Main [Debugger] svD
[E] C/C++ Application Debugger
[E] C/C++ Attach to Application Debugger: [GD-Link
[E] C/C++ Postmartem Debugger
[E] C/C++ Remote Application Coretd: [|[sean
~ [@1 GDB General Debugging
) MSDK msdk GDB Server Setup

1 Java Applet 1P Address:
[T Java Application Port: 3133

& Launch Group
1T Remote Java Application Device: GD32VWS53HMQT [code in RAM

Interface: SWD @ IJTAG

. [GDLinkGDBES:
Exe Location: oPmi aalss 48 uilder v1.4.14.29824\Tools\OpenOCD\xpack-openocd-0.11.0-3\bin\openoed.ex| | Browse

GDB Server other options

Config Options | f DAWifiS\git_release\GDM32103_ALL\MSDK\projects\eclipse\msdiiopenacd gdlinkcfg

Connect Configuration
[]Connect Under Reset

Debug Options

Initial Reset Pre-run/Restart Reset
Load execuatable v
Revert Appl
Filter matched 10 of 10 items e PPly
@ Tz o

In Figure 4-19. MSDK Debugging Configuration Interface with openocd, selecting "Initial

26

GigaDevice

AN154
GD32VW553 Quick Development Guide

4.43.

jmi [| G| B = ol BB £ it Bie|mnmM 3 @ i |[Cit~O-i®m® 4~ cHrGeer M QiR R REE
45 Debug > | [Project Explorer = B || [¢ mainc x| [€] gd32ww35x pla.. | [E] _riscv_rest.. [€] tasks.c = B ||®-Varia.. | % Brea.. X & Expr.. | = B
B %|i §| 1 \p A BREAe | BES| N B

Reset" and "Pre-run/Restart Reset" in the Debug Options will reset the chip at the start of
debugging. Choosing "Load executable" will flash the firmware once before debugging
begins.

Debugging using Jlink

The GD32VW553 supports JTAG and cJTAG debugging. First, connect the pins of the JLink
debugger to the GD32VW553 JTAG pins. Next, replace the cfg file within the red box in the
Figure 4-19. MSDK Debugging Configuration Interface with openocd with
"openocd_jlink.cfg" (this file is located in the directory: MSDK\projects\eclipse\msdk). Then,
click "Debug" to enter the debugging process. If driver issues arise during JLink debugging,
please refer to 6.4 JLink Driver Replacement.

Figure 4-20. MSDK debug interface

GD Embed-Builder - MSDK/app/main.c - Embedded Builder

File Edit Source Refactor Navigate Search Project Run Window Help

~ [@] MSDK msdk _ffd [GDB General Debugging]
~ {2 MSDK.elf
v 4 Thread #1 (Suspended : Breakpoint)
= main0 at main.c:134 0x8071fec
45 Ditools\EmbeddedBuilder v1.0.0.25769 De

@ [function: main] [type: Temporary]
int main(void)
{

sys_os_init();

platform_init();

»i| GD-Link dbg_print(NGTICE, "SDK Versien: ¥s\n", WIFI_GIT_REVISION);
dbg_print(NOTICE, "Build date: ¥s\n", SDK_BUILD DATE);
#ifdef PLATFORM_OS_RTTHREAD
if (sys_task create_dynamic((const uints t *)"start_task”,
START_TASK_STACK_SIZE, 0S_TASK_PRIORITY(START_TASK_PRIO), start_task,
dbg_print(ERR, "Create start task failed\rin");
#else
application_init();
#endif
sys_os_start();
151 v
< >
& Consele X | 3 Executables | !{ Registers| & Progress | Problems | [i] Debug Shell| B Debugger Conscle| [J Memory =08
= | BBl R[ES »8-r9-
MSDK msdk ffd [GDB General Debugging] [pid: 17732]
Info : erase ok ~
fo : Padding image section @ at @x088@b4Bc with 116 bytes
fo : Padding image section 1 at @x@513ef42 with 2 bytes
¢ GD32: Flash write ... not words to write, padding with exff
GD32: Flash write ... words to be prgrammed = @x8804d473
¢ emsis-dap JTAG TLR_RESET
fo i cmsis-dap JTAG TLR_RESET
: ITAG tap: riscv.cpu tap/device found: @x18387a6d (mfg: ©x536 (Nuclei System Technology Co Ltd), part: @x@387, wer: @xl1)
JTAG tap: auto@.tap tap/device found: @x790@e7a3 (mfg: @x3dl (GigaDevice Semiconductor (Beijing) Inc), part: @x90@@, ver: @
fo : progbuf is writable at @xde@esocs
¢ emsis-dap JTAG TLR_RESET
: cmsis-dap JTAG TLR_RESET
: ITAG tap: riscv.cpu tap/device found: @x10307a6d (mfg: ©x536 (Nuclei System Technology Co Ltd), part: @x@387, ver: @xl1)
fo : JTAG tap: auto@.tap tap/device found: @x799@@7a3 (mfg: @x3dl (GigaDevice Semiconductor (Beijing) Inc), part: @x9808, ver: &
¢ [@] Found B triggers
v
< > ||«

>

Writable Smart Insert 2193:1:91719

27

AN154

GigaDevice GD32VW553 Quick Development Guide
5. SEGGER Embedded Studio IDE project
This chapter introduces how to compile and debug the SDK under SEGGER Embedded
Studio IDE.
5.1. Open projects

B Open MBL project

Open the directory: GD32VW55x_RELEASE\MBL\project\segger, double click
MBL.emProject to open the MBL SES project. The opened project is shown in Figure 5-1.
MBL SES Project Project Interface.

Figure 5-1. MBL SES Project Project Interface

* MBL - SEGGER Embedded Studio V8.10c (64-bit) - Licensed to |- Gigadevice

File Edit View Search Mavigate Project Build Debug Target Toels Window Help
=[] e e e =EE a0 clmEe e E|e|e @
Project Explorer = % x

33 Common - E @ O <]

Project ltems Code Data+RO
Selution ‘MBL’
a [T Project ‘'MBL’

- [mainbeot 2 files
- [platform 12 files

B a x
Show: Transcript v Y Y |Output ¥ £k
() Disconnected (J-Link) @ Built OK INS (No editor) 16:28

® Open MSDK project

Open the directory: GD32VW55x_RELEASE\MSDK\projects\segger, double-click on the
MSDK.emProject to open the MSDK project, open the project as_Figure 5-2. MSDK SES
Project Interface shown.

28

c, AN154

GigaDevice GD32VW553 Quick Development Guide

Figure 5-2. MSDK SES Project Interface

MSDK - SEGGER Embedded Studio V8.10c (64-bit) - Licensed to [- Gigadevice

File Edit View Search Mavigate Project Build Debug Target Teols Window Help
D msoK uwwmu 2R a0 e a|a|o|s -
Project Explorer | X Empty Dock x
£ msdk @ @ o < P
Project ltems Code Data+RO
Solution 'MSDK'
- &1 Project ‘ALICLOUD"
- 0] Project "MSDK"
- [Project "WPA_SUPPLICANT'
T a x
Show: | Transcript T Y Y Output - £

5.2. Compilation

B SES build tool configuration

SES compiles the GD32VW55x project using the riscv32-none-elf toolchain by default. In
order to better support the extended instruction set of riscy, it needs to be compiled using the
nuclei toolchain: riscwnuclei-elf. The compilation tool can be obtained by contacting sales or

FAE. The details of the toolchain are shown in Figure 5-3. nuclei toolchain content. \Where
the Segger_IDE is the SES IDE installation directory.

Figure 5-3. nuclei toolchain content

Segger IDE » gecc » riscv-nuclei-elf
=
=5 EdrHER i
bin 2024/3/18 17:59 =
include 2024/3/19 9:40 =
lib 2024/7/12 15:2 i

B Compile the MBL project

Right-click the project and click build to guild MBL, as shown in Figure 5-4. Compiling the
MBL project; or click Build->Build MBL in the menu bar.

29

°

GigaDevice

AN154

GD32VW553 Quick Development Guide

Figure 5-4. Compiling the MBL project

[EEEEIEEEEE
Project Explorer X
22 Common - @ @ S o G
Project ltems Code Data+RO
Solution 'MBL Options... Alt+Return
a4 7] Project '"MBL

- [mainboo % Build

+ [platform Rebuild

Clean

The compilation resultis as shown in Figure 5-5. MBL compilation result.

Figure 5-5. MBL compilation result

Show: | Transcript

* Y% ¥ |Output -
1>
4
2>
3>
25
2>

2>

Compiling ‘init_rom_symbol.c’

Compiling ‘lib_hook_mbl.c’

Assembling ‘start.S”

Compiling ‘system gd32vw55x.c’

Linking MBL.elf

Post-Building ‘MBL’

Active code page: 65881

2> "Not add image header and tailer, goto download!"
2> 1 file(s) copied.

Build complete

After the compilation is complete, the script MBL\project\mbl_afterbuild.bat will be
automatically called to generate mbl.bin and copied to the directory \scripts\images.
B Compile the MSDK project

Right-click Project'MSDK' and click Build, as shown in_Figure 5-6. Compile MSDK project

Figure 5-6. Compile MSDK project

] MSDK e e | EEE Y
Project Explorer G| x
£t msdk = @ © G
Project ltems Code Data+RO
Solution ‘MSDK'
. Project "ALICLOL
gP::Jj::("MSDK’ e — S
- &1 Project 'WPA_SU %n Build
Rebuild
Clean
Export Build

B Configuration selection of MSDK

MSDK configuration switch as shown in Figure 5-7 MSDK Project Configuration Options.
MSDK SES project only supports msdk, msdk_ffd and msdk_mbedtls_2.17.0; if you need to
use the configuration of msdk_threadx, msdk_ffd_threadx please use the GD32
EmbeddedBuilder IDE project or wait for subsequent updates.

30

°

GigaDevice

AN154
GD32VW553 Quick Development Guide

5.3.

Figure 5-7 MSDK Project Configuration Options
File Edit Wiew Search Mavigate Project Build I

1= =

1 MSDK A

il

W e E

Project Explorer [X
L ~| O @ Q < F
Code | Data+RO

2 msdk_ffd
msdk_mbedtls_2.17.0

After selecting the corresponding configuration, right-click the project and click Build, the
compilation resultis shown in Figure 5-8 M SDK compilation result.

Figure 5-8 MSDK compilation result

Show: | Transcript v Y ¥ |Output -

2> Linking MSDK.elf

2> Post-Building ‘MSDK’

2> Active code page: 656881

2> ECHO is off.

2> "msdk.elf"

2> Invalid switch - "risc-v".

2> mbl_offset=0x8 image® offset=0xABB0 imagel_ offset=0x1EQODO
2> rftest_on=0

2> mbl_len = 18066

2> File Not Found

2> Missing operand.

2> rftest_end =

2> "Not add image header and tailer!™
2> 1 file(s) copied.

2> Goto download!

Build complete

B |mage generated by SDK

After MSDK is compiled, it will call MSDK\projects\image_afterbuild.bat to generate image-
ota.bin and image-all.bin, and copy the generated bin files to \scripts\images, as shown in
Figure 5-9. Images output.

image-ota.bin is the bin file generated by MSDK project, which can be used for OTA upgrade.
image-all.bin is the combination of MBL(mbl.bin) and MSDK(image-ota.bin), the firmware can
be used for production, download into flash and run.

Figure 5-9. Images output
ﬁ:‘

Q) image-allbin
Q) image-ota.bin

i mbl.bin

1]

Download firmware

Refer to 1.4 Download interface, copy GD32VW55x_RELEASE\scripts\images\image-

31

°

AN154

GigaDevice GD32VW553 Quick Development Guide
all.bin to the Gigadevice disc to download it. Or download it by clicking Target->Download
MSDK in the menu bar, as shown in Fogure 5-10 SES IDE image download.
Fogure 5-10 SES IDE image download

File Edit View Search Mavigate Project Build Debug = Target Tools Window Help
] MSDK - 3& %:ﬁ «ﬂ ;&‘ 1= = iE ' " Connect J-Link Ctrl+T, C
T Disconnect Ctrl+T, D
| % Reconnect Ctrl+T, E
23 masdk ~ O @ Q iE Attach Debugger Ctrl+T, H
Project ltems Code Data+RO Ru Reset Ctrl+T, S
solution "MSDK 1= Download MSDK Ctrl+T, L
& Project ‘ALICLOUD Z Verify MSDK CHrl+T, v
- [T] Project ‘MSDK' T40.1K 101.0K !
- &1 Project ‘WPA_SUPPLICANT' Erase All Cirl+T, K
Upload Range...
Download File 3
Verify File 3
yZ Start Cycle Counter
.3 Zero Cycle Counter Ctrl+T, Z
Switch Project 3
Target Connection Properties
5.4. Debugging

B Debugging configuration

SES IDE recommends using J-link to debug, and J-link driver version at least V7.920, this
version of J-link driver support GD32VW55x chip.

The project has been configured with Debug information by default, if you need to change it,
right-click on the MSDK project, click Options to open the configuration interface, you can
modify the Debugger and JLink under the Debug option, as shownin Figure 5-11. MSDK SES

Project Configuration Interface.

32

GigaDevice

AN154
GD32VW553 Quick Development Guide

Figure 5-11. MSDK SES Project Configuration Interface

Project ‘"MSDK' Options

T 4 ?:1 msdk ¥ | | Search Options [
4 Code Option Value
Assembler
Build 4 H Debugger
Code Analyzer ¢ Target Connection J-Link inherits
Code Generation # Target Device [RISC-V] GD32VW353HMOT inherits
Compiler ¢ Run To Control Always
Compiler Warning * RunTo main
External Build ¢ Startup Completion Point inherits
" & Start From Entry Point Symbol Yes inherits
File .
Lib ¢ Leave Target Running No
1orary ¢ CPU Register File §(StudieDir)/targets/cpu_registers_riscv.ml
Linker # Register Definition File $(ProjectDir)/GD32VW553x_Registersxm| modified
Preprocessor ¢ Debug Terminal Log File None
Printf/Scanf & HTML Watch File $(StudioDir)/html/heap.htm
Section ¢ Threads Script File None
Source Code ¢ Thread Ma.xlmum 25 : :
User Build Step ¢ Working Directory S(PFOJ.ECtDIrJ
+ Command Arguments S(ProjectMame)S(EXE)
4 Debug s " .
Deb: # Debug Additional Configurations
eougger ¢ Debug Additional Projects
GD_B Server « Debug Project Name $(ProjectMame)_$(Configuration)
J-Link ¢ Entry Point Symbol _start inherits
Loader ¢ Ignore .debug_aranges Section No
Simulator [RISC-V] ¢ Ignore .debug_frame Section No
Target Script ¢ |5A Extensions Debug Mone inherits
* Load Additional Projects
¢ Memory Upload Page Size 1,024
& Reserved Member Name reserved

B Start Debugging

Click Debug->GO in the menu bar to debug, click and wait for the image downloading to
complete and enter the interface shown in Figure 5-12. SES IDE Debug Interface.

Figure 5-12. SES IDE Debug Interface

File Edit View Search Navigate Project Build Debug Target Tools Window Help
D-E-E @ sn(xme-0| @ = T o= o s @
Break Cirl+.
Project Explorer o % W stop Shift+Fs 8 x G X
£8 msdkc = & [1MSDK_msdh ¢ Restart Ctrl+Shift+F5 | 4 9 B o+~ oo uE | % % Ko % Xhow §
Project ltems. Code | Data+RO 4 Toggle Breakpoint F9 A || x| value Size
Solution "MSDK Breakpoints v
- &1 Project ‘ALICLOU
4 [T Project "MSDK" T401K. 101.0K Step Into. F1 HE RO R RO R OOR R R RE RR
> [alicloud 15 Step Over F10
4 Sapp tfiles [146K] [11.8K] Step Out Shift+F11 .
> [Dcosp 2 g P t-after-the-booting-process-has-complet:
> & atemd.c un fo Lursor o FERE LR E R R R R R R KRR R
> & blenitc §= Auto Step
> & cmd_she Instruction Step Into Alt+F11
+ &1 iperfc o No locals
+ &) perfim 57 5 a® show Next Statement Al
S .
» &) main.c . £Z SetNext Statement Shift+F10 —
> &) matt_cr
+ &) ota_dem Switch Debug Mode Crl+F11 . .
& ping.c - | ion:-%s\n", -WIFI_GIT_REVISION);
. Clblespp 23 - o Quick Watch Shift+F9 ‘te:-%s\n", -SDK_BUILD_DATE);
> [0 ble_profile @, Debug With Ozone Alt+F5 .
s O Fatfs siles efined-CONFIG_RF_TEST_SUPPORT
. [libcoap-4.34 . Options. 3
> [Iwip S5file: . 11-init-failed\r\n"); < >
& e :) =D *
3 < > = -~
> ([plf 49files () Groups @& s —
> Cltuys 30 @ & R Call stack G| % .
. O3 util 10files Nz| Value Addres:
» (2 wifi_manage Show: Nt | T T | |Cumpt LA 2 » ABLRV32I @
* kol Output Files Programming 4.3 KB of addresses @:" || Function Call Address | File
&1 Project WPA_SUI Programming 735.1 KB of .text addr | & '::;;3”0 Tene |« ceu.rvsa @
Pr‘ngr*ammlng 1.8 KB of addresses @i - a2 0x0802a518
J-Link: Flash download: Bank @ @ ¢ 0x0800a2bc
Download suclcessful) 0x20048000
Memory map 'after startup complet: 0x20001dc8
v 0x00000000 v
< > < >
@ J)-link @BuiltOK INS R+W Ln67Coll 10:55

33

°

GigaDevice

AN154
GD32VW553 Quick Development Guide

6.

6.1.

6.2.

6.3.

FAQ

No image error

Print ERR: No image to boot (ret = -5).

Reason: An error occurs during the previous boot of WIFI_IOT, and the MBL records
operation exception of the IMAGE. If another IMAGE is not downloaded or also has a boot
exception, thismessage will be printed. In other words, the MBL believes that there is no valid
IMAGE to jump to, and the boot fails.

Solution: Download the MBL again. After that, the IMAGE status will be cleared.

Code running in SRAM

To run programs faster to achieve higher performance, move them to the SRAM.

Open GD32VW55x_RELEASE\MSDK\plfiriscwenWgd32w55x.1d, and find the line
".code_to_sram:". The code in the braces runs in the SRAM. To add new content, add it at
the end of the code. Refer to existing files for the format, for exemple:

KEEP (*port.o* (.text* .rodata*))
It is to put the entire port.c file in the SRAM and run it. For example:
KEEP (*tasks.o* (.text.xTaskincrementTick))

It is to put the xTaskIncrementTick () function in tasks.c in the SRAM and run it.

Select different project configurations during debugging

The MSDK project supports multiple configurations (refer to 3.2.6Configuration Selection).
During debugging, you need to select the appropriate configuration.

The specific operation is as follows: Click the "Search Project” button within the red box shown
in Figure 4-18. MSDK debug configuration. This opens the interface shown in Figure 6-1
Select Project Configuration for Debugging. Double-click the configuration you want to

debug within the Qualifier box below (note that you need to compile the corresponding
configuration first for the option to appear).

34

c, AN154

GigaDevice GD32VW553 Quick Development Guide
Figure 6-1 Select Project Configuration for Debugging

GD Program Selection

Choose a program to run:

Binaries:

D MSDK elf

Qualifier:

35 riscvle - /MSDK/msdk/MSDK.elf

s riscvle - /MSDK/msdk ffd/MSDK.elf

9'C$~ riscvle - /MSDK/msdk_mbedtls_2.17.0/MSDK.elf
3 riscvle - /MSDK/msdk_rtthread/MSDK.elf

%5 riscvle - /MSDK/msdk threadx/MSDK.elf

6.4. JLink Driver Replacement

When using OpenOCD+JLink debugging in an Embedded Builder project, if encountering the
issue "Error: No J-Link device found," JLink drivers need to be replaced. The steps are as
follows:

1. Use administrator privileges to open the zadig.exe file (official website:
https://zadig.akeo.ie). Click "Options" and check "ListAll Devices," as shown in Figure
6-2 Zadig Options Selection.

Figure 6-2 Zadig Options Selection

Device Options Help
v List All Devices
CMSIS « Ignore Hubs or Compaosite Parents ~ | [Edit

+ Create a Catalog File
More Information

WinlJSE (libusb)
usBIC Advanced Made libusb-nin32
libusbk

WinlJSB (Microsoft)

Driver | o Sign Catalog & Install Autogenerated Certificate

TET Log Verbosity >

8 devices found.

2. Select "JLink devices" from the dropdown menu, as shown in Figure 6-3 Replace JLink
Driver, where the BULK interface is displayed. Click "Replace Driver" to replace the
JLink driver with WinUSB.

35

c, AN154

GigaDevice GD32VW553 Quick Development Guide

Device Options Help

BULK interface (Interface 2)

~ | Edit
Driver |j|ink(v2.?0.8.0) | = |WinUSB (v6.1.7600. 16385) |: More Iﬂfzr";atioﬂ
WinUSE {libusb}
usE D 0105 libush-win32

= Replace Driver hd libusbk,
bEmE IE WinlJSB (Microsoft

5 devices found.

3. After the replacement is complete, unplug and replug the JLink device. Then use JLink

for debugging, and there will be no driver issues.

36

°

GigaDevice

AN154

GD32VW553 Quick Development Guide

7. Revision history

Table 7-1. Revision history

Revision No. Description Date

1.0 Initial release Nov.24.2023

11 Chapter 2 revision Jan.26.2024
SES IDE project added, GD32

1.2 Eclipse IDE updated to GD32 July.17. 2024

Embedded Builder

Update some diagrams to be

1.3 Apr.8.2025

consistent with SDK1.0.3

Update the development board

1.3a May.15.2025

images and add firmw are dow nloads

37

‘, AN154

GigaDevice GD32VW553 Quick Development Guide

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This
document, including any product of the Company described in this document (the “Product”), is ow ned by the Company
according to the law s of the People’s Republic of China and other applicable laws. The Company reserves all rights
under such laws and no Intellectual Property Rights are transferred (either wholly or partially) or licensed by the
Company (either expressly or impliedly) herein. The names and brands of third party referred thereto (if any) are the
property of their respective ow ner and referred to for identification purposes only.

To the maximum extent permitted by applicable law,the Company makes no representations or w arranties of any
kind, express or implied, withregard to the merchantability and the fitness for a particular purpose of the Product, nor
does the Company assume any liability arising out of the application or use of any Product. Any information provided in
this document is provided only for reference purposes. It is the sole responsibility of the user of this document to
determine w hether the Product is suitable and fitfor its applications and products planned, and properly design, program,
and test the functionality and safety of its applications and products planned using the Product. The Product is designed,
developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and the
Product is not designed or intended for use in (i) safety critical applications such as w eapons systems, nuclear facilities,
atomic energy controller, combustion controller, aeronautic or aerospace applications, traffic signal instruments,
pollution control or hazardous substance management; (ii) life-support systems, other medical equipment or systems
(including life support equipment and surgical implants); (iii) automotive applications or environments, including but not
limited to applications for active and passive safety of automobiles (regardless of front market or aftermarket), for
example, EPS, braking, ADAS (camera/fusion), EMS, TCU, BMS, BSG, TPMS, Airbag, Suspension, DMS, ICMS,
Domain, ESC, DCDC, e-clutch, advanced-lighting, etc.. Automobile herein means a vehicle propelled by a self-
contained motor, engine or the like, such as, without limitation, cars, trucks, motorcycles, electric cars, and other
transportation devices; and/or (iv) other uses w here the failure of the device or the Product can reasonably be expected
to result in personal injury, death, or severe property or environmental damage (collectively "Unintended Uses").
Customers shall take any and all actions to ensure the Product meets the applicable law s and regulations. The Company
is not liable for, in whole or in part, and customers shall hereby release the Company as well as its suppliers and/or
distributors from, any claim, damage, or other liability arising from or related to all Unintended Uses of the Product.
Customers shall indemnify and hold the Company, and its officers, employees, subsidiaries, affiliates as well as its
suppliers and/or distributors harmless fromand against all claims, costs, damages, and other liabilities, including claims
for personal injury or death, arising from or related to any Unintended Uses of the Product.

Information in this document is provided solely in connection withthe Product. The Company reserves the right to
make changes, corrections, modifications or improvements to this document and the Product described herein at any
time w ithout notice. The Company shall have no responsibility w hatsoever for conflicts or incompatibilities arising from
future changes to them. Information in this document supersedes and replaces information previously supplied in any

prior versions of this document.

© 2025 GigaDevice Semiconductor Inc. — All rights reserved

38

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction to development board
	1.1. Picture of real development board
	1.1.1. The START development board
	1.1.2. The EVAL development board

	1.2. Boot mode
	1.3. Debugger interface
	1.4. Download interface
	1.5. Viewing log

	2. Building development environment
	2.1. Installation of GD32 Embedded Builder
	2.2. Installation of SEGGER Embedded Studio IDE

	3. What developers must know
	3.1. SDK execution program group
	3.2. SDK configuration
	3.2.1. Configuration of wireless module
	3.2.2. SRAM layout
	3.2.3. FLASH layout
	3.2.4. Firmware version No.
	3.2.5. APP configuration
	3.2.6. Configuration Selection

	3.3. Correct log example

	4. GD32 Embedded Builder IDE project
	4.1. Opening the project group
	4.2. Compilation
	4.3. Download firmware
	4.3.1. USB Drive Copy
	4.3.2. Use afterbuild.bat for downloading
	4.3.3. Using J-Flash Lite for downloading

	4.4. Debugging
	4.4.1. Debugging configuration
	4.4.2. Debugging using GDLink
	4.4.3. Debugging using Jlink

	5. SEGGER Embedded Studio IDE project
	5.1. Open projects
	5.2. Compilation
	5.3. Download firmware
	5.4. Debugging

	6. FAQ
	6.1. No image error
	6.2. Code running in SRAM
	6.3. Select different project configurations during debugging
	6.4. JLink Driver Replacement

	7. Revision history

