GigaDevice Semiconductor Inc.

GD32VW553 Quick Development Guide

Application Note
AN154

Revision 1.3a

(Sep 2025)

c, AN154

GigaDevice GD32VW553 Quick Development Guide

Table of Contents

Table of CONENESoeiii e 2
LiSt Of FIQUIES ..o e e e e e e 4
LiSt Of TADIES ... e 6
1. Introduction to development boardcccoooiiii i, 7
1.1. Picture of real development boardccooiiiiiii i 7
1.1.1. The START development boardcccviiiiiii e 7
1.1.2. The EVAL development board ... 1
1.2, BOOEMOE.... ..o et e ettt a e eaaee 12
1.3. Debugger interface..............cccooiii i 12
1.4. Download interface...............cccciiiiii 13
1.5, VIeWING 1OQ. .. oo e et e e 13
2. Building development environment....................cccuiiiiiiiiiiiiiiiii 14
2.1. Installation of GD32 Embedded Builder.................ccuuviiiiiiiiiiiiiiiiiiiiiiiiiiineenns 14
2.2. Installation of SEGGER Embedded Studio IDEccccvviiiiiiiiiiiiiiiiiiiiiiiiennns 14
3. What developers must KNOW ... 15
3.1. SDK execution Program grOUPuuuuuuuuuuumnmmmnnnnnnnnnnnnnnnnsnnnnsnnnnnnssnnnnnnnnnnnnnnes 15
ST 1 0] Q2o 31 Te [T - 1 o o O 15
3.21. Configuration of Wireless MOdUIE.............uuiiiiiii i 15
3.2.2. SRAM [QYOUL ...ttt e e e e ettt e e e e e s eaaa e as 16
3.2.3. FLASH IAYOUL.......oeveeeeeeeeeeeeeeeeeee et 16
3.24. FIrmMWare VEIrSION INO.uiiiiiiiiiiiiiii ittt ettt eeee e eeeeeeeseeeeseeeeeeeeeeneeesesnennnnnnes 16
3.2.5. APP CONFIQUIALION ..ot e e 17
3.2.6. Configuration SEIECHON........cocuuiiiiii e 18
3.3, Correct 10g @XamPIeuuuuiiiiiiiiiiiiiiiiiie i n i nnnnnnnnnnnnes 19
4. GD32 Embedded Builder IDE project..............ccccccvviiiiiiiiiiiiiiiiiiiiiiiiieeeeee 20
4.1. Opening the ProjeCt GroUPcooiiiiiiiiiiiii e 20
4.2, ComMPIlation.o 23
4.3. Download fIrMWArE............ccooiiiiiieiee e 26
4.31. U] D4 1Y N O] o) PR PPP 26
4.3.2. Use afterbuild.bat for downloadingc.cooiiiiiiiiiii e 26
4.3.3. Using J-Flash Lite for downloadingcocueiiiiiiiiiiiiiiic e 27
4.4, DebUGGING.o 28
4.41. Debugging CONfIGUIALioNoiiiiiiiii e 28

c, AN154

GigaDevice GD32VW553 Quick Development Guide
4.4.2. Debugging USING GDLINKciiiiiiiiie e 29
4.4.3. Debug@ing USING JINK......cooiiiiiiiii e 30

5. SEGGER Embedded Studio IDE project.............cccccccoviiiiiiiiiiiiiiiiiiiieee 31
£t TN O T T-1 o T o (o [T o2 £ 31
5.2, ComPilation... ..o 32
5.3. Download fIrMWAre..............coooiiiiiiiiiiii e 34
5.4, DebUGUING.......ooiiiiiiiiii e e 35

6 L O PP UURPPPPPRR 37
70 I | o I8 g T Ve T =T oY PP 37
6.2. Coderunning in SRAM..............ooi e e 37
6.3. Select different project configurations during debuggingl. 37
6.4. JLink Driver Replacement ... 38

7. ReVISION NiSTOrY............uuiiiiiiiiiii e 40

c, AN154

GigaDevice GD32VW553 Quick Development Guide

List of Figures

Figure 1-1. The picture of the START development boardcocoiiiii s 7
Figure 1-2. GD32VW553-MINI-I Module(Left)and GD32VW553-MINI-E Module(Right).......................... 8
Figure 1-3. The picture of the EVAL development boardooooiiiii e 1"
Figure 1-4. Development Board Type Configurationcccooiiii e 12
Figure 1-5. List of devices and drivers ... 13
Figure 1-6. Configuration of serial POrt................ccciiiiiii e 13
Figure 2-1 The Directory Structure of GD32 Embedded Buildercccoiiiiiiee 14
Figure 3-1. BOOt ProCeSS ... 15
Figure 3-2. Configuration of wireless moduleccooiiii i 15
Figure 3-3. SRAM IQYOULooooiiiii e e e e s e e e e e e e s st re e e e e e e s e assnrbaaeeeeeeeaannes 16
Figure 3-4. FLASH JayOuUt...... ...ttt e e et e e bneeeeaaes 16
Figure 3-5. Firmware version NO................ 17
Figure 3-6 BLE library Selection................coo i 17
Figure 3-7. Project boot information...............coo 19
Figure 4-1. SDK dir€@CLOIYcooiiiiiiiiiiii ettt e e et e e bt e e e e sbbeeeeaaes 20
Figure 4-2. Starting GD32 Embedded Builder IDE ... 20
Figure 4-3. Open Projects from file Systemccooiiiiiii e 21
Figure 4-4. Selecting MBL project path ... 21
Figure 4-5. MBL Project interface................ooouiiiiiiiiiiii e 22
Figure 4-6. Selecting MSDK project pathoooiiiiiii e 22
Figure 4-7. MSDK and MBL project interfacescccooouiiiiiiiiiiiiii e 23
Figure 4-8. Properties of the ProjJect.............oo e 23
Figure 4-9. Compiling the MBL Project............cooiiiiiiiiiiiii e 24
Figure 4-10. MBL compilation result...............ooooiii e 24
Figure 4-11. target configuration Selectioncccoi i 25
Figure 4-12. MSDK compilation result..................ouiiiiii e 25

c, AN154

GigaDevice GD32VW553 Quick Development Guide
Figure 4-13. Images oUtpUL...............ooo 26
Figure 4-14 Configure image automatic downloadingcccccooiiiiiii e 26
Figure 4-15 JFlashLite Configurationccoiiiirii o 27
Figure 4-16 J-Flash Programming Interfacec.cooiiiii e 27
Figure 4-17. Opening the Debug Configuration optioncccoiii e 28
Figure 4-18. MSDK debug configurationcooiiii e 29
Figure 4-19. MSDK Debugging Configuration Interface with openocd........................o i, 29
Figure 4-20. MSDK debug interfacec.oooiiiiiiiiiii e 30
Figure 5-1. MBL SES Project Project Interface.................cccooviiii e 31
Figure 5-2. MSDK SES Project INterfacecc.oooiiiiiiiiii e 32
Figure 5-3. nuclei toolchain content ... 32
Figure 5-4. Compiling the MBL Project............coooiiiiiiiiiii e 33
Figure 5-5. MBL compilationresult..................... 33
Figure 5-6. Compile MSDK ProOJECt...........cooiiiiiiiiiiiii e e e are e e e eaes 33
Figure 5-7 MSDK Project Configuration Optionscccoiiiii e 34
Figure 5-8 MSDK compilation result...............ooiiiiiiiii e 34
Figure 5-9. IMages OULPUL............ooo e e e e e e s et e e e e e e e e e aaees 34
Fogure 5-10 SES IDE image doWnIOadocoiiiiiiiiiiiiiiii e 35
Figure 5-11. MSDK SES Project Configuration Interface..................ccoo e 36
Figure 5-12. SES IDE Debug INterfacecoooiiiiiiiiii e 36
Figure 6-1 Select Project Configuration for Debuggingcccccoiiiiiiiiiiii e 38
Figure 6-2 Zadig Options SeleCtion ..o 38
Figure 6-3 Replace JLINK DIIVEEo..uuiiiiiiiiie ettt e e e et ee e e e e e e e aaees 39

(4 AN154

GigaDevice GD32VW553 Quick Development Guide
List of Tables

Table 1-1. The START development board connectors and switch functionsooooi. 8
Table 1-2. The START development board main interfaces description.....................cccococc i, 9
Table 1-3. BOOt MOTE............ooiiiiei ettt e e e s e b e e e et e e e e s 12
Table 7-1. ReVISION NISTOIYouiiii s 40

©

AN154

GigaDevice GD32VW553 Quick Development Guide
1. Introduction to development board

1.1. Picture of real development board

1.1.1. The START development board

The START development board consists of a baseboard and a module equipped with the
GD32VW55x Wi-Fi+BLE chip.

Figure 1-1. The picture of the START development board

GD32VW553
R4

GD32VWS553
JTAG

i BOOT PIN

,wz'” . RESET
& g-,]‘_ (J; Button

-——

POWER

GD32E505 ™ ! + UART
JTAG e Al oy . + USB disk

+ GDLINK

Mainly focus on the following parts of the development board, which have been marked in the
Figure 1-1. The picture of the START development board.

Boot mode (Boot PIN);

Power supply port (POWER);

View log (UART);

Debugger interface (JLink, or GDLink);
Reboot (Reset Button).

The START V4.0 and V4.1 development board support four wireless modules:
GD32VW553 MD1, GD32VW553 MD2, GD32VW553-MINI-I, and GD32VW553-MINI-E.
Among these four modules, the wireless main chip of the GD32VW553 MD1 module adopts
a QFN40 package, while the wireless main chips of the other modules adopt a QFN32
package. The module model shown in the Figure 1-1. The picture of the START

development board is GD32VW553 MD1, which has the same package and dimensions as
GD32VW553 MD2. GD32VW553-MINI-I module and GD32VW553-MINI-E module are
shown in Fiqure 1-2. GD32VW553-MINI-I _Module(Left)and GD32VW553-MINI-E

7

©

GigaDevice

AN154
GD32VW553 Quick Development Guide

Module(Right).
Figure 1-2. GD32VW553-MINI-I Module(Left)and GD32VW553-MINI-E Module(Right).

The connectors and switch functions of the START development board are shown in Table

1-1. The START development board connectors and switch functions.

Table 1-1. The START development board connectors and switch functions

Interface

Description

J1

Interface to GPIO pins PAO~PA7 / PBO / PB15 of the main chip, as well as +5V

interface and GND interface.

J2

Interface to main chip PA12~PA15 / PB3 / PB4 / PC13~PC15 GPIO pins, as well as
module +3.3V power supply test interface, GND interface.

J3

Connect to the main chip PC8 (BOOTO0) and PB1 (BOOT1) pins, Boot mode selection
needs to be configured accordingly. Default BootO / 1 use shorting caps pull-down,
that is, the chip default boot from Sip flash.

J4

Interface to the JTAG pins of PB3(JTDO) / PA13(JTMS) / PA14(JTCK) / PA15(JTDI)
of the main chip, and interface to the JTAG pins of L TDO /L _TMS/L _TCK/L_TDI
of the GDLINK chip. By default, the above pins of the main chip and the GDLINK chip
are connected by shorting caps, and the firmware can be burned into the main chip
by the GDLINK chip.

J5

The interface to the UART T / RX pins of the main chip PA6 (UART2_TX) and PA7
(UART2_RX), and the interface to the L_UART_RX and L_UART_TX UART R/ TX
pins of the GDLINK chip. By default, the above pins of the main chip and the GDLINK
chip are connected via shorting caps, so that serial communication can be done
between the GDLINK chip and the main chip.

J6

GD32VW553 module 3.3V power supply connection port, the default use of short-
circuit cap connection. For power consumption test, external 3.3V power supply can

be directly connected to J6.2.

J8

USB-C interface, default serial communication and +5V power supply interface.

J9

Interface to GDLINK chip L_SWDIO /L_SWDCK /L_NRST and other SWD pins, as

€

GigaDevice

AN154
GD32VW553 Quick Development Guide

Interface Description

well as GDLINK +3.3V power supply test interface and GND interface.

W1 Connect the module to the NRST pin with GND via a 1K ohm resistor pull-up to 3.3
V. Press and release this switch to Reset the main chip.

Connect the GDLINK chip to the UART Download pin and GND via the 1K ohm
SW2 resistor pull-up to 3.3V, press and hold the switch, connect the START development
board to the PC via the USB cable, and then release the switch to copy/paste the

firmware of the GDLINK chip to be burned.

Connect the module to the PU pin in series with +3.3V power supply (or GND) via a
1K ohm resistor. Switch up toggle, main chip power up, switch down toggle, main

SW3 chip power down.

For the START development board using the GD32VW553-MINI-I / E module, this

switch is not available.

The main interfaces description of the START development board are described in Table 1-
2. The START development board main interfaces description. For the V3.0 and earlier
versions of the START development board, the GPIOs connected to the red, green, and blue
LEDs are PB11/12/13, so the START development board with MD2 module cannot light up
these three LEDs. However, in the new versions V4.0 and V4.1 of the START development
board, the GPIOs connected to the red, green, and blue LEDs have been changed to
PB0/PA12/PB4, so both MD2 and MINI modules can light up these three LEDs.

For more information about the START development board, you can refer to the GD32 official
website's GD32VW553K-START Demo Suites page and download the attached content.

Table 1-2. The START development board main interfaces description

Interface Description
PAO 10 port that can be configured by the user.
PA1 IO port that can be configured by the user.
PA2 IO port that can be configured by the user.
PA3 IO port that can be configured by the user.
PA4 IO port that can be configured by the user.
PA5 IO port that can be configured by the user.
PA6 / UART2_TX 10 port that can be configured by the user; UART TX.
PA7 | UART2_RX 10 port that can be configured by the user; UART RX.
PBO IO port that can be configured by the user.
PB1/BOOT1 10 port that can be configured by the user; Boot mode selection.
10 port that can be configured by the user.
PB2 This interface is not available for START development board with MD2
or MINI-I/E module.

https://www.gd32mcu.com/download/agree/box_id/12/document_id/543/path_type/1

GigaDevice

AN154
GD32VW553 Quick Development Guide
Interface Description
GND Reference ground
PB11 10 port that can be configured by the user.
This interface is not available for START development board with MD2
or MINI-I/E module.
PB12 1O port that can be configured by the user.
This interface is not available for START development board with MD2
or MINI-I/E module.
PB13 10 port that can be configured by the user.
This interface is not available for START development board with MD2
or MINI-I/E module.
PB15 10 port that can be configured by the user.
PA8 IO port that can be configured by the user.
PA9 10 port that can be configured by the user.
This interface is not available for START development board with MD2
or MINI-I/E module.
PA10 10 port that can be configured by the user.
This interface is not available for START development board with MD2
or MINI-I/E module.
PA11 10 port that can be configured by the user.
This interface is not available for START development board with MD2
or MINI-I/E module.
PA12 10 port that can be configured by the user.
PB3/JTDO 10 port that can be configured by the user; JTDO pin.
PB4 / JNTRST IO port that can be configured by the user; JNTRST pin.
PA13/JTMS 10 port that can be configured by the user; JTMS pin.
PA14 / JTCK 10 port that can be configured by the user; JTCK pin.
PC8 /BOOTO0 10 port that can be configured by the user; Boot mode select.
PA15/ JTDI IO port that can be configured by the user; JTDI pin.
PC13 IO port that can be configured by the user.
This interface is not available for START development board with MINI-
I/E module.
PC14 IO port that can be configured by the user.
PC15 IO port that can be configured by the user.
NRST Module enable pin, connect to 3.3V power supply to enable the module.
Module enable pin, connect to 3.3V power supply to enable the module.
PU This interface is not available for START development board with MINI-
I/E module.
3V3 3.3V power supply pin
GND Reference ground

10

©

GigaDevice

AN154
GD32VW553 Quick Development Guide

1.1.2.

The EVAL development board

The EVAL development board consists of a baseboard and a module equipped with the
GD32VW55x Wi-Fi+BLE chip. The baseboard lead out many peripheral test ports, such as
12C, IFRP, ADC and so on.

Figure 1-3. The picture of the EVAL development board

GD32VW553
R4

GD32VW553
JTAG

BOOT PIN

UART

POWER
+ GDLINK

R S

Developers mainly focus on the following parts of the development board, which have been
marked in the Figure 1-3. The picture of the EVAL development board.

Boot mode (Boot PIN);

Power supply port (power supply);
View log (UART);

Debugger interface (JLink, or GDLink);
Reboot (Reset Button).

For more information about the EVAL development board, you can refer to the GD32 official
website's GD32VW553 Demo Suites page and download the attached content.

For the START development board and the EVAL development board, the SDK configuration
is different and different macros need to be selected to enable them. As shown in Figure 1-4.
Development Board Type Confiquration, the SDK selects the START development board

configuration as the default. The configuration file is GD32VW55x_RELEASE/config/
platform_def.h.

11

https://www.gd32mcu.com/download/agree/box_id/12/document_id/554/path_type/1

€

AN154

GigaDevice GD32VW553 Quick Development Guide
Figure 1-4. Development Board Type Configuration
PLATFORM_BOARD 32VWSSX START
PLATFORM_BOARD 32VWS5X_EVAL
PLATFORM_BOARD 32VWSS5X F527
ONFIG _PLATFORM ASIC
ne-CONFIG_BOARD PLATFORM BOARD 32VWSSX START
1.2. Boot mode
GD32VW55x can boot from ROM, FLASH, or SRAM.
The level selection of the two pins BOOTO and BOOT1 in the BOOT SWD box of the
development board determines the boot mode. See Table 1-3. Boot mode. For more
instructions on the boot mode, please refer to the document "GD32VW55x_User_Manual".
Table 1-3. Boot mode
EFBOOTLK | BOOTO | BOOT1 EFSB Boot address Boot area
0 0 - 0 0x08000000 SIP Flash
0 0 - 1 0x0BF46000 secure boot
0 1 0 - 0x0BF40000 Bootloader/ROM
0 1 1 - 0x20000000 SRAM
1 0 - 0 0x08000000 SIP Flash
1 0 - 1 0xOBF46000 Secure boot
1 1 - - 0x0BF40000 Bootloader/ROM
1.3. Debugger interface

For START development board, it comes with a GDLink(GD32E505) debugger that can be
used with OpenOCD. Can also use an external debugger (GDLink or JLink) at the JTAG
interface of the board for debugging and download. The GD32E505 chip also integrates the
UART function, so only one USB cable is required to supply power, debug, and view the log.
Connect the pins JCLK, JTWS, JTDO and JTDI to the middle four pins through jumper caps,
and then download and debug the code through DAPLINK. Figure 1-1. The picture of the
START development board shows how to debug through DAPLINK.

For EVAL development board, GDLink or JLink debugger can be used for debugging and
download.

It should also be noted that the GD32VW55x supports cJTAG and JTAG but does not support
the SWD debugging interface.

12

GigaDevice

AN154
GD32VW553 Quick Development Guide

1.4.

1.5.

Download interface

For the START development board, in addition to using the GDLink debugger or JLink
debugger mentioned in the previous section for firmware downloading, if debugging
functionality is not required and only firmware downloading is needed, the firmware can also
be downloaded using a USB drive copy method. Connect the development board to a
computer via a USB cable, as shown in Figure 1-5. List of devices and drivers, under the

devices and drives list as the GigaDevice drive. Copy the "image-all.bin" file (refer to
subsequent sections) into the GigaDevice drive to complete the FLASH programming of the
GD32VW55x chip.

Figure 1-5. List of devices and drivers

AR (D:) FIHEEE () GigaDevice (F)
]]
-y 129 GB ATFE, £ 244 GB - 130 GB ATFE, £221GB 63.9 MB AJF, #63.9 MB

For EVAL development board, GDLink or JLink debugger can be used for download. Dragging
into the USB disk is not supported.

Viewing log

Connect a MicroUSB cable to the START development board, use a serial port tool on the
PC, and configure it according to the parameters in Figure 1-6. Confiquration of serial port

and connect to the board. After that, use the serial port to output logs.

Figure 1-6. Configuration of serial port

Serial Settings
COM: COM21 v
Baudrate: 115200 "
Data Bits: 8 ~
Parity: Mone v
Stop Bits: 1 w
Open

13

€

GigaDevice

AN154
GD32VW553 Quick Development Guide

2.

2.1.

2.2.

Building development environment

Build a development environment before compiling and downloading the firmware.

The development tool currently used is GD32 Embedded Builder and SEGGER Embedded
Studio IDE.

Installation of GD32 Embedded Builder

The GD32 Embedded Builder can select GD32VW5 at website:
https://gd32mcu.com/cn/download to download. The uncompress downloaded files is as
Figure 2-1 The Directory Structure of GD32 Embedded Builder shows. The build tool, tool
chain, openocd, jlink, and other related tools have all been placed in the Tools directory.

Figure 2-1 The Directory Structure of GD32 Embedded Builder

v GD32EmbeddedBuilder v1.4.14.29824 2 Et
examples configuration
v GD32EmbeddedBuilder Doc
configuration licenses
Dac p2
licenses plugins
= artifacts.xml
p2 —
e [changelog.txt
ugins
Fre [d}] GD32EmbeddedBuilder.exe
v [Tools I5] GD32EmbeddedBuilder.ini
Build Tools [#85] GD32EmbeddedBuilderc.exe
GOLinkGDBServer [%] headless-build.bat
GMNU Tools ARM Embedded & notice.html
J-Link Q" readme.bdt
LLVM

nuclei_riscv_newlibc_prebuilt win32_2022.04
OpenOCD
RISC-V Embedded GCC

Installation of SEGGER Embedded Studio IDE

Please visit the website: https://wiki.segger.com/GD32V for how to get the SEGGER
Embedded Studio IDE and License Activation Key.

14

https://gd32mcu.com/cn/download
https://wiki.segger.com/GD32V

AN154

GigaDevice GD32VW553 Quick Development Guide
3. What developers must know
Before getting started with development, first understand the members of the SDK execution
program group, how to correctly configure the SDK.
3.1. SDK execution program group
SDK will finally generate two main execution programs: MBL (Main Bootloader) and MSDK
(Main SDK), which will eventually be downloaded to FLASH to run. After power-on, the
programs will boot from Reset_Handler of MBL, and then jump to the MSDK main program
to run, as shown in Figure 3-1. Boot process.
Figure 3-1. Boot process
MBL > MSDK
3.2. SDK configuration
3.2.1. Configuration of wireless module

The configuration file is GD32VW55x_RELEASE/config/platform_def.h, whose main content
is as shown in Figure 3-2. Configuration of wireless module.

Figure 3-2. Configuration of wireless module

B In the case of BLE/ WiFi combo mode, please enable:
- #define CFG_WLAN_SUPPORT
- #define CFG_BLE_SUPPORT

B In the case of BLE only, please only enable:
- #define CFG_BLE_SUPPORT

B In the case of WiFi only, please only enable:
- #define CFG_WLAN_SUPPORT

B To disable the wireless module, please disable all

15

AN154

GigaDevice GD32VW553 Quick Development Guide
3.2.2. SRAM layout
The configuration file is GD32VW55x_RELEASE\config\config_gdm32.h. Modify the following
macro definition (as Figure 3-3. SRAM layout shows) values to plan the SRAM space
occupied by the executable program segments MBL and IMG. These values are offset
addresses, and the base address is defined at the beginning of the file.
The line marked "!Keep unchanged!" cannot be modified; otherwise, the operation of the
MbedTLS code in the ROM will be affected.
Figure 3-3. SRAM layout
Ox300
2x200
For the planning of SRAM space in each executable program segment, refer to the .Id file
under the corresponding project, such as MBL\project\eclipse\mbl.ld and
MSDK\plfiriscvienv\gd32vw55x.1d.
3.2.3. FLASH layout
The configuration file is GD32VW55x_ RELEASE\config\config_gdm32.h. Modify the following
macro definition(as Fiqure 3-4. FLASH layout shows) values to plan the FLASH space
occupied by the executable program segments MBL and MSDK. These values are offset
addresses, and the base address is defined at the beginning of the file.
The line marked "'Keep unchanged!" cannot be modified; otherwise, the operation of the
project will be affected.
Figure 3-4. FLASH layout
RE_VTOR_ALTGNMENT ox288
ET_OFFSET oxe
SET oxe
e RE_END_OFFSET
For the planning of FLASH space in each executable program segment, refer to the .Id file
under the corresponding project, such as MBL\project\eclipse\mbl.ld and
MSDK\plfiriscvienv\gd32vw55x.1d.
3.2.4. Firmware version No.

The configuration file is GD32VW55x_RELEASE\config\config_gdm32.h. Modify the following
16

AN154

GigaDevice GD32VW553 Quick Development Guide
macro definition values showed in Figure 3-5. Firmware version No. to specify the version
No. In addition, the macro RE_IMG_VERSION is used in Securt Boot to determine the
firmware version.
MBL only supports local upgrade, while IMG supports online upgrade. The version No.
released by the SDK is consistent with RE_IMG_VERSION.
Figure 3-5. Firmware version No.
e RE_MBL_VERSION Bx01000003
ne RE_IMG_VERSION Bx81860663
3.2.5. APP configuration

The configuration file is GD32VW55x_RELEASE\MSDK\app\app_cfg.h. Choose whether to
enable some applications, such as ATCMD, Alibaba Cloud, MQTT, COAP and so on.

By modifying the macro CONFIG_BLE_LIB in app_cfg.h, the BLE library can be switched.
When CONFIG_BLE_LIB is set to BLE_LIB_MIN (as shown in Figure 3-6 BLE library
selection), the project compilation will use libble.a, and the header file will include
ble_config_min.h. When CONFIG_BLE_LIB is set to BLE_LIB_MAX, the project compilation
will use libble_max.a, and the header file will include ble_config_max.h.

Figure 3-6 BLE library selection

d ne BLE_LIB_MIN
efine BLE_LIB MAX

#define CONFIG_BLE_LIB BLE_LIE_MIN

The features supported by libble.a are as follows:
1. Supports peripheral
2. Supports a single connection link
3. Supports server
4. Supports host and controller
5. Supports EATT
6. Supports WeChat applet WiFi provisioning
Based on libble.a, libble_max.a additionally supports the following features:
1. Supports central
2. Supports four connection links

3. Supports client

17

€

AN154

GigaDevice GD32VW553 Quick Development Guide
4. Supports periodic advertising
5. Supports PHY updates
6. Supports power control
7. Supports BLE ping
8. Supports secure connection
3.2.6. Configuration Selection

The main project-MSDK, supports multiple configurations, with msdk selected by default.
Additional options include msdk ffd, msdk_mbedtls 2.17.0, msdk_rithread, and
msdk_threadx.

The main difference between msdk_ffd and msdk lies in the WiFi connection management
library included in the project. The msdk includes libwpas, which is more streamlined and
consumes fewer memory resources. The msdk_ffd includes wpa_supplicant, which is more
comprehensive and general-purpose but has a larger codebase and consumes more memory
resources. Additionally, msdk_ffd includes libble_max.a by default, enabling more BLE
features. Of course, msdk can switch between libble.a and libble_max.a by modifying the
configuration.

The main difference between msdk _mbedtls 2.17.0 and msdk lies in the version of the
MbedTLS library included in the project. The msdk includes MbedTLS 3.6.2, which runs in
FLASH. The msdk_mbedtls_2.17.0 includes MbedTLS 2.17.0, with most of its content running
in ROM. If strict security requirements are needed, it is recommended to choose msdk. If
FLASH space is limited, it is recommended to choose msdk_mbedtls_2.17.0

The main difference between msdk_rtthread and msdk lies in the RTOS used in the project.
The msdk uses FreeRTOS. The msdk_rtthread uses RT-Thread.

The main difference between msdk_threadx and msdk also lies in the RTOS used in the
project. The msdk uses FreeRTOS. The msdk_threadx uses ThreadX.

*+ msdk
FreeRTOS + Libwpas.a + libble.a + MbesTLS 3.6.2
+ msdk ffd
FreeRTOS + wpa_supplicant.a + libble_max.a + MbesTLS 3.6.2
*+ msdk_mbedtls_2.17.0
FreeRTOS + Libwpas.a + libble.a + ROM MbesTLS 2.17.0
* msdk_rtthread

RTThread + Libwpas.a + libble.a + MbesTLS 3.6.2
18

AN154

GigaDevice GD32VW553 Quick Development Guide
+ msdk_threadx
Threadx + Libwpas.a + libble.a + MbesTLS 3.6.2
For details on how to make configuration selection for actual use, see the Compiling MSDK
Projects section in subsection_ 4.2Compilation.
3.3. Correct log example

After the firmware group (MBL+MSDK) is successfully downloaded, open the serial port tool,
and press the Reset button on the development board. The startup information is shown in
Figure 3-7. Project boot information. If an exception occurs, please check 6FAQfor help.

Figure 3-7. Project boot information

AlLW: MBL: First print.

AlLW: MBL: Boot from Image ©.

AlLW: MBL: Validate Image & OK.

ALW: MBL: Jump to Main Image (Bx03008a080).
=== RF initialization finished ===

SDK Version: vl1.8.3a-86d78d@58d779fad
Build date: 2825/85/14 16:29:11

=== WiFi calibration done ===

PHY initialization finished ===

local addr: AB:89:67:45:23:81, type 0x0
BLE Adapter enable complete ===

o
nrm

L

19

GigaDevice

AN154
GD32VW553 Quick Development Guide

4.

4.1.

GD32 Embedded Builder IDE project

This chapter introduces how to compile and debug the SDK under Embedded Builder IDE.

The project group consists of two projects: MBL/MSDK. MSDK includes Wi-Fi protocol stack,
BLE protocol stack, peripheral drivers, applications, etc. The MBL is mainly responsible for
selecting the correct MSDK firmware from the two (current firmware and OTA firmware) to
run.

Opening the project group

Check the SDK directory GD32VW55x_RELEASE, as shown in Figure 4-1. SDK directory.

Figure 4-1. SDK directory

config

docs

MEL

MSDK
ROM-EXPORT
scripts

-
[release notes.xt

To start the IDE, double-click Embedded Builder.exe in the Embedded Builder directory, and
select the SDK directory GD32VW55x_RELEASE as the workspace, and then click the
launch button, as shown in Figure 4-2. Starting GD32 Embedded Builder IDE.

Figure 4-2. Starting GD32 Embedded Builder IDE

GD Eclipse Launcher

Select a directory as workspace

Embedded Builder uses the workspace directory to store its preferences and development artifacts.

Workspace: | D:\risc-v\GD32VW55x_RELEASE ~ Browse...

[JUse this as the default and do not ask again

» Recent Workspaces

B Import the MBL project

In the File menu, click Open Projects from file System, as shown in Figure 4-3. Open

Projects from file System.

20

GigaDevice

AN154

GD32VW553 Quick Development Guide

Figure 4-3. Open Projects from file System

GD Embed-Builder - Embedded Builder

File Edit Source Refactor Search Project
New Alt+Shift+MN »
Open File...

_, Open Projects from File System...

Recent Files H
Close Ctrl+W
Close All Ctrl+Shife+W
Save Ctrl+5
Save As..

Save All Ctrl+Shift+S
Revert

Move...

Rename... F2

&' Refresh F5
Convert Line Delimiters To »
Print... Ctrl+P

i Import..

3 Export.

Properties Alt+Enter
Switch Workspace 3
Restart

Exit

Select the project path GD32VW55x_RELEASE\MBL\project\eclipse, as shown in Fiqure
4-4. Selecting MBL project path, and click Finish.

Figure 4-4. Selecting MBL project path

[0 Import Projects from File System or Archive m] *
Import Projects from File System or Archive =1
- I

This wizard analyzes the content of your folder or archive file to find projects and import them in the IDE. o /

Import source: | D:\risc-W\GD32VW55x_RELEASE_V1.0.3\MBL\project\eclipse \,‘ I Directory... | Archive..

type filter text Selact Al

Falder Import as
. ‘ . Desclect Al
eclipse Eclipse project

1 of 1 selected
[Hide already open projects
[JClose newly imported projects upon completion

Use installed project configurators to:
Search for nested projects
Detect and configure project natures

Working sets
[JAdd project to working sets New...

Select...

Show other spedialized import wizards

':?;' < Back Next = Finish Cancel

Close the welcome interface, and the MBL project is shown as Fiqure 4-5. MBL project

interface shows.

21

c, AN154

GigaDevice GD32VW553 Quick Development Guide

Figure 4-5. MBL project interface

File Edit Navigate Search Project Window Help
A milhg |qu||§|¢'¢|’?%1?1‘().}' v - T
5 Praoject Explorer &3 = O
=i =
v (25 MBL
i Includes
(2 mainboot
Zp platform
[mbl.ld

B Import the MSDK project

In the File menu, click Open Projects from file System, Select the project path
GD32VW55x_RELEASE\MSDK\projects\eclipse\msdk, as shown in Figure 4-6. Selecting
MSDK project path, and click Finish.

Figure 4-6. Selecting MSDK project path

[Import Projects from File System or Archive [m} X
Import Projects from File System or Archive 1
P

This wizard analyzes the content of your folder or archive file to find projects and import them in the IDE. |4

Import source: | D:\rsc-WGD32VW55x_RELEASE_V1.0.3\MSDK\projects\eclipseimsdk v| | Directory... | Archive...

type filter text Select All

Folder Import as
. . Deselect All
msdk Eclipse project

1 of 1 selected

[JHide already open projects
[J€lose newly imported projects upon completion
Use installed project configurators to:

Search for nested projects

Detect and configure project natures
Working sets
[JAdd project to working sets MNewr...

Select...

Show other specialized import wizards

&) = Back MNext = Finish Cancel

View the MSDK and MBL project interfaces, as shown in Figure 4-7. MSDK and MBL project
interfaces.

22

c, AN154

GigaDevice GD32VW553 Quick Development Guide
Figure 4-7. MSDK and MBL project interfaces

File Edit MNavigate Search Project Window Help
Infi |Bl@ @ EMICIH Yoy~

5 Project Explorer 2 = 0

v 2% MBL
kil Includes
[y mainboot
&p platform
[mbld

w 2= MSDK
[l Includes
&y alicloud
[app
(p ble_app
(¢ ble_profile
¢ coap
(= Fatfs
&R Iwip
[y mbedtls
G os
i pif
[F tuya
[y util
(3 wifi_manager

2% azure

4.2, Compilation

B Check the configuration of the project compilation tool

Right-click on the project, click on properties, select C/C++ Build -> Settings in order, and on
the tab click on toolchain settings., as shown in Figure 4-8. Properties of the project.

Figure 4-8. Properties of the project

GD Properties for MBL

type filter text Settings =14 - v
Resource
~ C/C++ Build
Build Variables Configuration: | Debug [Active] ~ | Manage Configurations...
Environment
Logging
Settings ¥ Tool Settings Toolchain Settings Target Settings & Build Steps Build Artifact Binary Parsers @ Error Parsers
Tool Chain Editor
XL C/C++ Compiler
C/C++ General Toolchain Prefix: |r’iscv-r|uc|ei-e|i- |

Project Natures

Toolchain name: | GNU MCU RISC-V GCC ~

ToolChain Path: |‘\Tnﬂ\s\nur\EiiriscvinEwlibtiprebuiltiwins272022.Dd\gcc\bin | Browse

Project References

Refactoring History Build Tool Path: |‘\Too\s\Eui|d Tools\2.10-20180103-191%bin | Browse
Run/Debug Settings

@ Apply and Close Cancel

B Compile the MBL project
Right-click the project, and click Build Project, as shown in Figure 4-9. Compiling the MBL
project.

23

c, AN154

GigaDevice GD32VW553 Quick Development Guide

Figure 4-9. Compiling the MBL project

I{5 Project Explorer

a .bc N‘“I
MNew >

Go Into

#
ol
= Open in New Window
G
Ca Ctrl+C
& = = .
> Paste Ctrl+V
= o Delete Delete
VIS N Source »
Bl Move...
Rename... F2

Erase

R

Download
Migrate to GO Project
Import...

[

Export..

Build Project
Clean Project
Refresh F5

T ST SV ST ST T ST ST ST T
' I

Close Project
Close Unrelated Project

Build Configurations »
Build Targets »

Index »

Run As >
Debug As »
Profile As »

F QO

Team S
Compare With »

Restore from Local History...

Configure »

The compilation result is as shown in Figure 4-10. MBL compilation result.

Figure 4-10. MBL compilation result

J=| Tasks | & Console &2
CDT Build Console [MBL]

Invoking: GD RISC-V MCU Flash Image(Hex)

riscv-nuclei-elf-objcopy -0 ihex “MBL.elf" "MBL.hex"

Invoking: GD RISC-V MCU Flash Image(Bin)

riscv-nuclei-elf-objcopy -0 binary "MBL.elf"™ “MBL.bin™

Invoking: GD RISC-V MCU Listing

Invoking: GD RISC-V MCU Print Size

Finished building: MBL.hex

riscv-nuclei-elf-objdump --source --all-headers --demangle --line-numbers --wide "MBL.elf"™ > "MBL.lst"
Finished building: MBL.bin

riscv-nuclei-elf-size --format=berkeley "MBL.elf"

text data bss dec hex filename
12926 4208 17a7e 34196 8594 MBL.elf

Finished building: MBL.siz
Finished building: MBL.lst

14:19:@1 Build Finished. @ errors, @ warnings. (toock 7s5.481ms)

After the compilation is complete, the script MBL\project\imbl_afterbuild.bat will be
automatically called to generate mbl.bin and copied to the directory \scripts\images.

24

GigaDevice

AN154
GD32VW553 Quick Development Guide

B Compile the MSDK project

Right-click the project, and click Build Configurations—>Set Active—><target configuration>
in order. as shown in Figure 4-11. target confiquration selection, the default target project
is msdk.

Figure 4-11. target configuration selection

v =5 MSniK

New »

Go Into

Open in New Window

Copy Ctrl+C
aste A

Delete Delete

Source »

Rename... F2

&2 Erase

Download

T x

Migrate to GD Project
Import...

Export...

Build Project
Clean Project
Refresh F5
Close Project

- Outl Close Unrelated Project
fin outlic Build Configurations »

Build Targets »

Set Active

Manage...

¥ & 1 msdk (default: msdk # freertos + mbedtls-3.6.2)
2 msdk_ffd (full function device)
3 msdk_mbedtls_2.17.0 (msdk + freertos + mbedtls-2.17.0(in ROM))
4 msdk_rtthread (msdk with rtthread os)
5 msdk_threadx (msdk with threadx os)

Index 5 Build All
O Runas » Clean All

45 Debug As »

Build Selected...

Right-click the project again, and click Build Project, The compilation result is as shown in
Figure 4-12. MSDK compilation result.

Figure 4-12. MSDK compilation result

[2! problems || Tasks | & Caonsole i | [Properties| =5 Progress
CDT Build Consale [MSDK]

Script processing completed.

Inveking: GD RISC-V MCU Flash Image(Hex)

riscv-nuclei-elf-objcopy -0 ihex "MSDK.elf" "MSDK.hex™
Inveking: GD RISC-V MCU Flash Image(Bin)
riscv-nuclei-elf-objcopy -0 binary "MSDK.elf"™ “MSDK.bin™

Inveking: GD RISC-V MCU Listing

Invoking: GD RISC-V MCU Print Size

Finished building: MSDK.hex

riscv-nuclei-elf-objdump --source --all-headers --demangle --line-numbers --wide "MSDK.elf" » "MSDK.lst"
Finished building: MSDK.bin

riscv-nuclei-elf-size --format=berkeley "MSDK.elf"

text
1231668

data bss dec hex filename
1144 183276 1336888 146318 MSDK.elf

Finished building: MSDK.siz

B Images generated by SDK

After MSDK is compiled, it will call MSDK\projects\ image_afterbuild.bat to generate image-
ota.bin and image-all.bin, and copy the generated bin files to \scripts\images, as shown in
Figure 4-13. Images output.

25

AN154

GigaDevice GD32VW553 Quick Development Guide
image-ota.bin is the bin file generated by MSDK project, which can be used for OTA upgrade.
image-all.bin is the combination of MBL(mbl.bin) and MSDK(image-ota.bin), the firmware can
be used for production, download into FLASH and run.

Figure 4-13. Images output
25 EEREE e=] e
Q) image-all.bin 4:26 BIN 305 788 KB
Q) image-ota.bin 4:26 BIN 305 748 KB
& mbl.bin 419 BIN 3z 7 KB
4.3. Download firmware
4.3.1. USB Drive Copy
As shown in1.4Download interface, copying the image-all.bin file from
GD32VW55x_RELEASE\scripts\images to the Gigadevice drive. This functionality is only
supported on the START development board when using the onboard GDLink connection.
4.3.2. Use afterbuild.bat for downloading

The project supports automatically downloading the image after compilation by invoking a
script through afterbuild. The script file is MSDK\projects\image_afterbuild.bat.

At the end of image_afterbuild.bat, there is a section of code configured for automatic image
downloading, as shown in Figure 4-14 Confiqure image automatic downloading.

Figure 4-14 Configure image automatic downloading

This segment of code utilizes OpenOCD with Jlink/GDLink to perform downloading. By
configuring OpenOCD to use different .cfg files, users can choose whether to download via
Jlink or GDLink.

When using GDLink to connect the computer and development board, set LINKCFG to
openocd_gdlink.cfg. For connections via Jlink, set LINKCFG to openocd_jlink.cfg.

After compilation, Afterbuild will invoke this script to execute the configured commands and
complete the corresponding image download (please uncomment the lines within the red box
from the figure; this feature is disabled by default).

26

GigaDevice

AN154
GD32VW553 Quick Development Guide

4.3.3.

Using J-Flash Lite for downloading

When using Jlink for debugging and firmware downloading, you can find JFlashLite.exe in the
directory: GD32EmbeddedBuilder_v1.4.14.29824\Tools\J-Link. Double-click to open
JFlashLite and configure it as shown in Figure 4-15 JFlashLite Configuration.

Figure 4-15 JFlashLite Configuration

3 SEGGER J-Flash Lite V8.10

Target device

£D3ZVWE5HMOT | [

Target interface Speed
JTAC - B800 w | kHz
Flazh banks

Baseiddr Name Loader

[] 0208000000 Flash |Defsult =

Set the Target device to GD32VW553xxxx, choose the Target interface as JTAG (cJTAG can
also be selected, but it is slower), and set the Speed to 9600 kHz. Then click OK.

In the opened interface, as shown in Figure 4-16 J-Flash Programming Interface, select

the Data File as the compiled image-all.bin or image-ota.bin (stored in the directory
GD32VW55x_RELEASE_V1.0.xx\scripts\images after compilation).

When selecting image-all.bin, set the Prog. Addr. on the right to 0x08000000.
When selecting image-ota.bin, set the Prog. Addr. on the right to 0x0800A000.

Once the settings are complete, click "Program Device" and wait for the progress bar to finish,
which indicates the completion of the programming process.

Figure 4-16 J-Flash Programming Interface

3| SEGGER J-Flash Lite V8.10

File Help

Targset

Device Interface Speed

€D3ZVWEEIHMQT JTAC 9600 LkH=z
| | |

Data File (kin / hex / mot / srec / ...) From. addr.

0=08000000 Erase Chip

uuuuuuuuuu

F:_r ipts\images\image—all. bin |

Program Device

Log

27

€

GigaDevice

AN154
GD32VW553 Quick Development Guide

4.4.

4.4.1.

Debugging
Currently, both the START development board and the EVAL development board feature

onboard GDLink, and an external Jlink can also be used for debugging.

The debugging process is described below, and the default project configuration is msdk. If
you need to switch to another project configuration, please refer to section 6.3Select different

project configurations during debugging for selecting different project configurations for

debugging.

Debugging configuration

Right-click on the MSDK project and click Debug As->Debug Configurations, as shown in
Figure 4-17. Opening the Debug Confiquration option.

Figure 4-17. Opening the Debug Configuration option

v £ MSC™
] >
g'ff‘ Bi DS
@l In Go Into
G al Open in New Window
e al
Copy Ctrl+C
g bl 5
[E5]
g, bl Paste Ctrl+V
E[: cc & Delete Delete
= Fe Source >
(ER w Move...
[y m Rename... F2
m
ﬁ & Erase
%] o ,7\ | d
& pl &) Downloa
Cp tu Migrate to GD Project
Gy ul 229 Import...
w1 Exporta.
2 o Build Project
Clean Project
B= Outline Refresh F5 = B ||l Tasks | & Console 3
hn outline i Clase Project CDT Build Console [MSDK
Close Unrelated Project
Build Configurations >
Build Targets >
Index >
@ RunAs »
45 Debug As > @ 16D
Profile As » [E] 2 Local C/C++ Application
f==n > Debug Configurations...
Compare With 0 —

Double-click "GDB General Debugging" on the left, and a Debug configuration will
automatically be created, as shown in Fiqure 4-18. MSDK debug confiquration. Here, the

c/c++ application field has automatically selected msdk\MSDK .elf, which points to the ELF file
generated by the configuration to be debugged.

You can check or uncheck “Enable/Disable auto build” to choose whether or not to compile
the project before debugging.

28

©

GigaDevice

AN154
GD32VW553 Quick Development Guide

4.4.2.

Figure 4-18. MSDK debug configuration

GD Debug Configurations

Create, manage, and run configurations

B § = x' S MName: ‘MSDK msdk ‘

type filter text [E] Main | Debugger| SVD
[E] C/C++ Application
[€] C/C++ Attach to Applicatic
[€] C/C++ Postmortem Debug ‘dek\MSDK'EH |

C/C++ Application:

[£] C/C++ Remote Applicatior Variables... Search Project... Browse...
v [di] GDB General Debugging .
[T MSDK msdk Project
[£] GDB Hardware Debugging ‘MSDK Browse...

1 Java Applet

[T] Java Application
5 Launch Group Build Configuration: | Select Automatically ~
= Launch Group (Deprecatec

Build (if required) before launching

() Enable auto build () Disable auto build

T Remote Java Application
= PP (®) Use workspace settings Configure Workspace Seftings...

< >
Revert Apply
Filter matched 12 of 12 items e

Debugging using GDLink

As shown in Figure 4-19. MSDK Debugqgqging Confiquration Interface with openocd, switch

the GDB Server to OpenOCD in the Debugger interface. Additionally, specify the Config
Options within the red box as shown in the figure. Afterward, click "Debug" to start debugging.

The debugging interface is displayed in Figure 4-20. MSDK debug interface.
Figure 4-19. MSDK Debugging Configuration Interface with openocd

GD Debug Configurations

Create, manage, and run configurations .
@ [Main]: Program not specified

BEeRX BT - Name: [MSDK msdk |
[type fiter tent | | [Main [Debugger| svD
[E] C/C++ Application Debugger =

[E] C/C++ Attach to Application
[E] C/C++ Postmortem Debugger
[£1 /Ce-+ Remots Appiication e[|[em
~ [@i] GDB General Debugging
] MSDK msd GDE Server Setup

9 Java Applet 1P Address:
[T Java Application Port: 3333

@ Launch Group
T Remote Java Application Device: GD32VWS53HMQT [Code in RAM

Interface: SWD @IJTAG

GDLinkGDBS,
Exe Location: OPMd sl HBuilder_v1.4.14,20824\Tools\OpenOCD\xpack-openocd-0.11.0-A\bin\openocd.ex| | Browse

GDB Server other options

Debugger: |GD-Link ~

Config Options | -f DAwifi6\git release\GDM32103_ALL\MSDK\projectstechipsetmsdkiapenacd gdlink.cfg

Connect Configuration
[Connect Under Reset

Debug Options

Initial Reset Pre-run/Restart Reset
Load execuatable -
Revert Appl
Filter matched 10 of 10 items EE
@ Debug Close

In Figure 4-19. MSDK Debugging Configuration Interface with openocd, selecting "Initial

29

GigaDevice

AN154
GD32VW553 Quick Development Guide

4.4.3.

Reset" and "Pre-run/Restart Reset" in the Debug Options will reset the chip at the start of

debugging. Choosing "Load executable" will flash the firmware once before debugging
begins.

Debugging using Jlink

The GD32VW553 supports JTAG and cJTAG debugging. First, connect the pins of the JLink
debugger to the GD32VW553 JTAG pins. Next, replace the cfg file within the red box in the
Figure 4-19. MSDK Debugging Configuration Interface with openocd with
"openocd_jlink.cfg" (this file is located in the directory: MSDK\projects\eclipse\msdk). Then,

click "Debug" to enter the debugging process. If driver issues arise during JLink debugging,
please refer to 6.4 JLink Driver Replacement.

Figure 4-20. MSDK debug interface

GD Embed-Builder - MSDK/app/main.c - Embedded Builder

Fle Edit Source Refactor Navigate Search Project Run Window Help
jmiid | B | 6% Ko < B 23 it Die|knmd .l |[Cits~O-im®™ 4~
s Debug X | [Project Explorer = O | [maine X f& wrapper freer..

THroD G- M QiR EE
€] gd32ww55x_pla... €] _risev_rest... [g) tasks.c = 0O ||®= Varia.. | % Brea.. X | Expr.. | = O
® REAw|BEB|N §

& [function: main] [type: Temporary]

B %[+ §
v [di] MSDK msdk ffd [GDB General Debugging]
v [MSDK.elf
v @ Thread #1 (Suspended : Breakpoint)
= main() at main.c:134 0x8071fec
1 DAtools\EmbeddedBuilder v1.0.0.25769_De;
& GD-Link

nt main(void)

sys_os_init();
platforn_init();

dbg_print(NOTICE, "SDK Version: ¥s\n", WIFI_GIT_REVISION):
dbg_print(NOTICE, "Build date: %s\n", SDK_BUILD_DATE);

#ifdef PLATFORM 05 RTTHREAD
if (sys_task create_dynamic((const uint8 t *)"start _task”,
START_TASK_STACK_SIZE, 0S_TASK_PRIORITY(START_TASK_PRIO), start_task,
dbg_print(ERR, "Create start task failed\r\n");

¥
#else

application_init();
endif

sys_os_start();

v
< >

) Console % | {3 Executables| ¥ Registers| = Progress| . Problems | [i] Debug Shell| B Debugger Console| [Memory = g
] [BEREE -5

MSDK msdk ffd [GDB General Debugging] [pid: 17732]

Info : erase ok =

Info : Padding image section @ at ©x8868b48c with 116 bytes

Info : Padding image section 1 at @x@813ef42 with 2 bytes

h write ... not words to write, padding with @xff

ite ... words to be prgrammed - @x@e04d4fs

TLR_RESET

dap ITAG TLR_RESET

\G tap: riscv.cpu tap/device found: ©x19387a6d (mfg: @x536
@.tap tap/device found: @x796007a3 (mfg: Gx3dl

table at @xdeeeesce

TLR_RESET

TLR_RESET

ap: riscv.cpu tap/device found: 8x103@7a6d (wfg: ©x536

ap: autod.tap tap/device found: 8x790067a3 (mfg: @x3d1

Info : [@] Found 8 triggers

(Nuclei System Technology Co Ltd), part: @x@3@7, ver: @xl)
(GigaDevice Semiconductor (Beijing) Inc), part: @x988@, ver: @

(Nuclei System Technology Co Ltd), part: @x@3@7, ver: @xl)
(GigaDevice Semiconductor (Beijing) Inc), part: @x988@, ver: @

v
> || < >

Writable Smart Insert 2193:1:91719

30

AN154
GD32VW553 Quick Development Guide

GigaDevice

5. SEGGER Embedded Studio IDE project
This chapter introduces how to compile and debug the SDK under SEGGER Embedded
Studio IDE.

5.1. Open projects

B Open MBL project

Open the directory: GD32VW55x_RELEASE\MBL\project\segger, double click

MBL.emProject to open the MBL SES project. The opened project is shown in Figure 5-1.
MBL SES Project Project Interface.

Figure 5-1. MBL SES Project Project Interface

MBL - SEGGER Embedded Studio VB.10c (64-bit) - Licensed to [INN- Gigadevice

File Edit View Search MNavigate Project Build Debug Target Tools Window Help
TImeL JuwealiEEEr a2 el ||| @
Project Explorer = | %X Empty Dock x
£2¢ Common ~E @ O < 4
Project ltems Code Data+RO
Solution ‘MBL’
4[] Project ‘MBL'
] mainboot 2 files
(3 platform 12 files
@ a x
Show: Transcript T Y Y |Output ~ el
() Disconnected (J-Link) @ Built OK NS (Mo editor) 16:28

B Open MSDK project

Open the directory: GD32VW55x RELEASE\MSDK\projects\segger, double-click on the
MSDK.emProject to open the MSDK project, open the project as_Figure 5-2. MSDK SES

Project Interface shown.

31

AN154
GD32VW553 Quick Development Guide

Figure 5-2. MSDK SES Project Interface

MSDK - SEGGER Embedded Studio v8.10c (64-bit) - Licensed to [- Gigadevice

File Edit View Search Mavigate Project Build Debug Target Teols Window Help
TImsok Jeawn =ErEt 20 clmaalae|s @
Project Explorer = | X Empty Dock x
£ msdk ~ O @ O << P
Project ltems Code Data+RO
Solution 'MSDK’'
&1 Project 'ALICLOUD’
] Project ‘MSDK'
- B Praject "WPA_SUPPLICANT'
n x
Show: | Transcript v Ve Y |Output ~ el

Compilation

B SES build tool configuration

SES compiles the GD32VW55x project using the riscv32-none-elf toolchain by default. In
order to better support the extended instruction set of riscy, it needs to be compiled using the
nuclei toolchain: riscv-nuclei-elf. The compilation tool can be obtained by contacting sales or
FAE. The details of the toolchain are shown in Figure 5-3. nuclei toolchain content. Where
the Segger IDE is the SES IDE installation directory.

Figure 5-3. nuclei toolchain content

Segger IDE » gec » riscv-nuclei-elf
=t =
bin i
include =
lib =

B Compile the MBL project
Right-click the project and click build to guild MBL, as shown in Figure 5-4. Compiling the
MBL project; or click Build->Build MBL in the menu bar.

32

AN154
GD32VW553 Quick Development Guide

Figure 5-4. Compiling the MBL project

o meL T RKEIEEER
Project Explorer M =X
2% Common ~ @O @ o o G
Project ltems Code Data+RO
Solution "MEL Options... Alt+Return
a4 [] Project 'MBL
- [mainboo %{uﬁ Build
+ (3 platform Rebuild
Clean

The compilation result is as shown in Figure 5-5. MBL compilation result.

Figure 5-5. MBL compilation result

Show: Transcript v Y Y Output ~

1> Compiling “init_rom_symbol.c’

4> Compiling “lib_hook_mbl.c’

2> Assembling ‘start.S’

3> Compiling “system_gd32vw55x.c’

2> Linking MBL.elf

2> Post-Building ‘MBL’

2> Active code page: 65081

2> "Not add image header and tailer, goto download!"
2> 1 file(s) copied.

Build complete

After the compilation is complete, the script MBL\project\imbl_afterbuild.bat will be
automatically called to generate mbl.bin and copied to the directory \scripts\images.
® Compile the MSDK project

Right-click Project 'MSDK' and click Build, as shown in_Figure 5-6. Compile MSDK project.

Figure 5-6. Compile MSDK project

T MoK e w e | =
9 x
4F msdk @ @ o @ G
Project [tems Code Data+RO

Solution 'MSDE'
+ &1 Project "ALICLOU
- [7] Project 'MSDK'

3 Project "WPA_SU %:E Build

Options... Alt+Return

Rebuild
Clean

Export Build

B Configuration selection of MSDK

MSDK configuration switch as shown in Figure 5-7 MSDK Project Confiquration Options.
MSDK SES project only supports msdk, msdk_ffd and msdk_mbedtls_2.17.0; if you need to
use the -configuration of msdk_threadx, msdk ffd threadx please use the GD32
EmbeddedBuilder IDE project or wait for subsequent updates.

33

c, AN154

GigaDevice GD32VW553 Quick Development Guide

Figure 5-7 MSDK Project Configuration Options
File Edit View Search MNavigate Project Build]

1= = g

] MSDK -

W W E %

Project Explorer £ K
8 @ & S P G
Code Data+RO

£33 msdk_mbedtls_2.17.0

€:3 <Edit Configurations...»

After selecting the corresponding configuration, right-click the project and click Build, the
compilation result is shown in Figure 5-8 MSDK compilation result.

Figure 5-8 MSDK compilation result

Show: | Transcript v Y ¥ |Output v

2>» Linking MSDK.elf

2» Post-Building ‘MSDK’

2» Active code page: 65881

2> ECHO is off.

2> "msdk.elf"

2> Invalid switch - "prisc-v".

2> mbl_offset=0x8 image® offset=0xABBB imagel_ offset=0x1EBBBO
2> rftest_on=0

2> mbl_len = 18666

2> File Not Found

2» Missing operand.

2> rftest_end =

2>» "Not add image header and tailer!™
2> 1 file(s) copied.

2> Goto download!

Build complete

B Image generated by SDK

After MSDK is compiled, it will call MSDK\projects\image_afterbuild.bat to generate image-
ota.bin and image-all.bin, and copy the generated bin files to \scripts\images, as shown in
Figure 5-9. Images output.

image-ota.bin is the bin file generated by MSDK project, which can be used for OTA upgrade.
image-all.bin is the combination of MBL(mbl.bin) and MSDK(image-ota.bin), the firmware can

be used for production, download into flash and run.

Figure 5-9. Images output

2% CEGL: E=] S

Q) image-all.bin BIN =it 788 KB

Q) image-ota.bin BIN 3Zi4 748 KB

Q mblbin BIN Izit 17 KB
5.3. Download firmware

Refer to 1.4 Download interface, copy GD32VW55x_ RELEASE\scripts\images\image-

34

c, AN154

GigaDevice GD32VW553 Quick Development Guide

all.bin to the Gigadevice disc to download it. Or download it by clicking Target->Download
MSDK in the menu bar, as shown in Foqure 5-10 SES IDE image download.

Fogure 5-10 SES IDE image download

File Edit View Search Mavigate Project Build Debug = Target Tools Window Help

7] MSDK vl e «@ % | 1= I= = ;Q Connect J-Link Ctrl+T, C
W Disconnect Ctrl+T, D
Project Explorer Gl | x SHIFE Rt f:,) Reconnect Ctrl+T, E
£33 msdk * O @ S < iE Attach Debugger Ctrl+T, H
Project ltems Code Data+RO B Reset Ctrl+T, §
Solution "MSDK' 1= Download MSDK Ctrl+T, L
- &1 Project 'ALICLOUD o - = Verify MSDK Ctrl+T, V
- [T] Project ‘MSDK" 401K 01.0K
- &1 Project WPA_SUPPLICANT' Erase All Ctrl+T, K
Upload Range...
Download File 3
Verify File 3
Ctrl+T, Z
Switch Project 4
Target Connection Properties

5.4. Debugging

B Debugging configuration

SES IDE recommends using J-link to debug, and J-link driver version at least V7.920, this
version of J-link driver support GD32VW55x chip.

The project has been configured with Debug information by default, if you need to change it,
right-click on the MSDK project, click Options to open the configuration interface, you can
modify the Debugger and JLink under the Debug option, as shown in Figure 5-11. MSDK SES
Project Configuration Interface.

35

GigaDevice

AN154
GD32VW553 Quick Development Guide

Figure 5-11. MSDK SES Project Configuration Interface

Project 'MSDK' Options

T S 68 msdk = | |Search Options [
4 Code Option Value
Assembler
Build 4 H Debugger
Code Analyzer » Target Connection J-Link inherits
Code Generation » Target Device [RISC-V] GD32VW353HMOT inherits
Compiler * RunTo Control Always
Compiler Warning ¢ RunTo main
External Build » Startup Completion Point inherits
. s Start From Entry Point Symbol Yes inherits
File .
Lis » Leave Target Running No
torary = CPU Register File $(StudioDir)/targets/cpu_registers_riscvaml
Linker » Register Definition File $(ProjectDir)/GD32VW553x_Registersxml modified
Preprocessor » Debug Terminal Log File None
Printf/Scanf s HTML Watch File $(StudioDir)/html/heap.htm
Section * Threads Script File None
Source Code . Threa.d Ma.xlmum 25 : :
User Build Step » Working Directory S(PFCIJ.EHDIF)
4 Debu » Command Arguments S$(ProjectMame)S(EXE)
ng » Debug Additional Configurations
ebugger » Debug Additional Projects
GDE Server = Debug Project Name $(ProjectMName)_S(Configuration)
J-Link » Entry Point Symbol _start inherits
Loader » |gnore .debug_aranges Section No
Simulator [RISC-V] * Ignore .debug_frame Section No
Target Script » |SA Extensions Debug None inherits
* Load Additional Projects
* Memory Upload Page Size 1,024
» Reserved Member Name reserved

B Start Debugging

Click Debug->GO in the menu bar to debug, click and wait for the image downloading to
complete and enter the interface shown in Fiqure 5-12. SES IDE Debugq Interface.

Figure 5-12. SES IDE Debug Interface

File Edit View Search Navigate Project Build Debug Target Tools Window Help
D-E- @@ ar|lxmr-a| & 2 75 (= g2
Break Ctrl+.
ol& | x O o shin-rs bl = | *
£t msdk = @&] MSDK_msdk = Restart CtrlsShift+FS | & & Xo Xe Xb x| &
Project Items Code | Data+RO M Toggle Breakpoint o Size
1 Solution 'MSDK’ Breakpoints »
> B Project ‘ALICLOU
4 [Project 'MSDK’ 400K 101.0€ Step Into A1 L L L T ——
> [alicloud 15 Step Over F10
4 S3app tidiles [14.6K] [11.8K] Step Out Shift+F11
> coap 2 e P t-after-the-booting-process-has-complet:
p Qatcmd‘: un fo Lursar " HFEREXERRRR R KRR KRR ERRRR KRR KR RRRRERT
> & ble_init.c Auto Step
> & cmd_she Instruction Step Into Alt+F11
. & ipec . No locals
& ipefm Ei 57 17 = Show Next Statement Al
> &) main.c . £Z Set Next Statement Shift+F10 —
>] matt_cm
i) ote_dem Switch Debug Mode Ctrl+F11) .
el * ion:-%s\n",-WIFI_GIT_REVISION);
> g2 ping.c 16K 12¢
L e:-ms\n ,- |)| H
> [dbleapp 23 oo Quick Watch Shift-+F9 te:-%s\n",-SDK_BUILD DATE
> (3 ble_profile @, Debug With Ozone Alt+F5 .
+ 3 Fatfs Siles efined-CONFIG_RF_TEST_SUPPORT
> [0 libcoap-4.3.4 > Options »
> 3 wip 55file: . 11-init-failed\r\n"); < >
> [0 mbedtls 12 v | .
g\st=rs1 B X
> [(]os 206files < > %
> [0 pif 49files (w) Groups @@ <& —
> (tuya 30dile =) B Call Stack 2] X Value Addres: A
> (20 util 10files _ = i
» (3 wifi_manage Show: RIS Tl Ye T | [Qutput LS & - ABI,RV32I @
> & Output Files Programming 4.3 KB of addresses ©¢* | Function Call Address | File
> B Project 'WPA_sUI Programming 735.1 KB of .text addi | |G intmain0 main.c: 7 4 CPU, RV321 @
Programming 1.8 KB of addresses ©f start0 start.5 33 Ox0EEIAS1E
J-Link: Flash download: Bank © @ ¢ 0x0800a2bc
Download su?<essful Ox20048000
Memory map 'after startup complet: 0x20001dc8
v 0x20000000 v
< > < >
@)-link @BuiltOK INS R+W Ln67Col1 10:55

36

€

GigaDevice

AN154
GD32VW553 Quick Development Guide

6.

6.1.

6.2.

6.3.

FAQ

No image error

Print ERR: No image to boot (ret = -5).

Reason: An error occurs during the previous boot of WIFI_IOT, and the MBL records
operation exception of the IMAGE. If another IMAGE is not downloaded or also has a boot
exception, this message will be printed. In other words, the MBL believes that there is no valid
IMAGE to jump to, and the boot fails.

Solution: Download the MBL again. After that, the IMAGE status will be cleared.

Code running in SRAM

To run programs faster to achieve higher performance, move them to the SRAM.

Open GD32VW55x_RELEASE\MSDK\plfiriscv\env\gd32vw55x.ld, and find the line
".code_to_sram:". The code in the braces runs in the SRAM. To add new content, add it at
the end of the code. Refer to existing files for the format, for exemple:

KEEP (*port.o* (.text* .rodata*))
It is to put the entire port.c file in the SRAM and run it. For example:
KEEP (*tasks.o (.text.xTaskIncrementTick))

It is to put the xTaskincrementTick () function in tasks.c in the SRAM and run it.

Select different project configurations during debugging

The MSDK project supports multiple configurations (refer to 3.2.6Configuration Selection).

During debugging, you need to select the appropriate configuration.

The specific operation is as follows: Click the "Search Project" button within the red box shown
in Fiqure 4-18. MSDK debug configuration. This opens the interface shown in Figure 6-1

Select Project Confiquration for Debugging. Double-click the configuration you want to

debug within the Qualifier box below (note that you need to compile the corresponding
configuration first for the option to appear).

37

c, AN154

GigaDevice GD32VW553 Quick Development Guide

Figure 6-1 Select Project Configuration for Debugging

GD Program Selection

Choose a program to run:

Binaries:

D MsDK.elf

Qualifier:

35 riscvle - MSDK/msdk/MSDK.elf

s riscvle - /MSDK/msdk_fid/MSDK.elf

s riscvle - /MSDK/msdk mbedtls 2.17.0/MSDK.elf
ﬁ: riscvle - /MSDK/msdk_rtthread/MSDK.elf

% riscvle - /MSDK/msdk_threadx/MSDK.elf

©) Cancel
6.4. JLink Driver Replacement

When using OpenOCD+JLink debugging in an Embedded Builder project, if encountering the
issue "Error: No J-Link device found," JLink drivers need to be replaced. The steps are as
follows:

1. Use administrator privileges to open the zadig.exe file (official website:
https://zadig.akeo.ie). Click "Options" and check "List All Devices," as shown in Figure
6-2 Zadig Options Selection.

Figure 6-2 Zadig Options Selection

Device | Options Help
~ List All Devices

CMSIS| » Ignore Hubs or Composite Parents ~ | CJEedit

+ Create a Catalog File

" c . More Information
Driver [us ' Sign Catalog & Install Autogenerated Certificate

WinUSB (ibusb)

USBIC Advanced Mode libusb-win32
. libusbk
Log Verbosity >
1T 1 - -
] WinUSB (Microsoft)

8 devices found.

2. Select "JLink devices" from the dropdown menu, as shown in Figure 6-3 Replace JLink

Driver, where the BULK interface is displayed. Click "Replace Driver" to replace the
JLink driver with WinUSB.

38

c, AN154

GigaDevice GD32VW553 Quick Development Guide

Figure 6-3 Replace JLink Driver

[] Zadi

Device Options Help

BULK interface (Interface 2)

~ | Edit
Driver |j|ink(v2.?0.8.0) | = |WinUSB (v6. 1.7600. 16385) |: More Iﬂfzr";atioﬂ
WinUSE {libusb)
UsBID 0105 libusb-win32

= Replace Driver hd libusbk
EmS IE WinUSB (Microsoft

5 devices found.

3. After the replacement is complete, unplug and replug the JLink device. Then use JLink

for debugging, and there will be no driver issues.

39

€

GigaDevice

AN154

GD32VW553 Quick Development Guide

7.

Revision history

Table 7-1. Revision history

Revision No. Description Date
1.0 Initial release Nov.24.2023
1.1 Chapter 2 revision Jan.26.2024
SES IDE project added, GD32
1.2 Eclipse IDE updated to GD32 July.17. 2024
Embedded Builder
Update some diagrams to be
1.3 Apr.8.2025
consistent with SDK1.0.3
Update the development board
1.3a i) May.15.2025
images and add firmware downloads

40

c, AN154

GigaDevice GD32VW553 Quick Development Guide

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This
document, including any product of the Company described in this document (the “Product”), is owned by the Company
according to the laws of the People’s Republic of China and other applicable laws. The Company reserves all rights
under such laws and no Intellectual Property Rights are transferred (either wholly or partially) or licensed by the
Company (either expressly or impliedly) herein. The names and brands of third party referred thereto (if any) are the
property of their respective owner and referred to for identification purposes only.

To the maximum extent permitted by applicable law, the Company makes no representations or warranties of any
kind, express or implied, with regard to the merchantability and the fitness for a particular purpose of the Product, nor
does the Company assume any liability arising out of the application or use of any Product. Any information provided in
this document is provided only for reference purposes. It is the sole responsibility of the user of this document to
determine whether the Product is suitable and fit for its applications and products planned, and properly design, program,
and test the functionality and safety of its applications and products planned using the Product. The Product is designed,
developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and the
Product is not designed or intended for use in (i) safety critical applications such as weapons systems, nuclear facilities,
atomic energy controller, combustion controller, aeronautic or aerospace applications, traffic signal instruments,
pollution control or hazardous substance management; (ii) life-support systems, other medical equipment or systems
(including life support equipment and surgical implants); (iii) automotive applications or environments, including but not
limited to applications for active and passive safety of automobiles (regardless of front market or aftermarket), for
example, EPS, braking, ADAS (cameralfusion), EMS, TCU, BMS, BSG, TPMS, Airbag, Suspension, DMS, ICMS,
Domain, ESC, DCDC, e-clutch, advanced-lighting, etc.. Automobile herein means a vehicle propelled by a self-
contained motor, engine or the like, such as, without limitation, cars, trucks, motorcycles, electric cars, and other
transportation devices; and/or (iv) other uses where the failure of the device or the Product can reasonably be expected
to result in personal injury, death, or severe property or environmental damage (collectively "Unintended Uses").
Customers shall take any and all actions to ensure the Product meets the applicable laws and regulations. The Company
is not liable for, in whole or in part, and customers shall hereby release the Company as well as its suppliers and/or
distributors from, any claim, damage, or other liability arising from or related to all Unintended Uses of the Product.
Customers shall indemnify and hold the Company, and its officers, employees, subsidiaries, affiliates as well as its
suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims
for personal injury or death, arising from or related to any Unintended Uses of the Product.

Information in this document is provided solely in connection with the Product. The Company reserves the right to
make changes, corrections, modifications or improvements to this document and the Product described herein at any
time without notice. The Company shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them. Information in this document supersedes and replaces information previously supplied in any

prior versions of this document.

© 2025 GigaDevice Semiconductor Inc. — All rights reserved

41

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction to development board
	1.1. Picture of real development board
	1.1.1. The START development board
	1.1.2. The EVAL development board

	1.2. Boot mode
	1.3. Debugger interface
	1.4. Download interface
	1.5. Viewing log

	2. Building development environment
	2.1. Installation of GD32 Embedded Builder
	2.2. Installation of SEGGER Embedded Studio IDE

	3. What developers must know
	3.1. SDK execution program group
	3.2. SDK configuration
	3.2.1. Configuration of wireless module
	3.2.2. SRAM layout
	3.2.3. FLASH layout
	3.2.4. Firmware version No.
	3.2.5. APP configuration
	3.2.6. Configuration Selection

	3.3. Correct log example

	4. GD32 Embedded Builder IDE project
	4.1. Opening the project group
	4.2. Compilation
	4.3. Download firmware
	4.3.1. USB Drive Copy
	4.3.2. Use afterbuild.bat for downloading
	4.3.3. Using J-Flash Lite for downloading

	4.4. Debugging
	4.4.1. Debugging configuration
	4.4.2. Debugging using GDLink
	4.4.3. Debugging using Jlink

	5. SEGGER Embedded Studio IDE project
	5.1. Open projects
	5.2. Compilation
	5.3. Download firmware
	5.4. Debugging

	6. FAQ
	6.1. No image error
	6.2. Code running in SRAM
	6.3. Select different project configurations during debugging
	6.4. JLink Driver Replacement

	7. Revision history

