GigaDevice Semiconductor Inc.

Differences between GD32L235 and GD32L233 products

Application Note AN179

Revision 1.0

(Apr. 2024)

Table of Contents

Tab	ole c	of Contents	1
Lis	t of	Table	
1.	Intr	roduction4	•
2.	Ele	ctric characteristic differences5)
3.	Per	ripheral function differences6	,
3	.1.	Flash memory controller (FMC)6	ì
3	.2.	Power management unit (PMU)6	;
3	.3.	Reset and clock unit (RCU)6	ì
3	.4.	Analog to digital converter (ADC)7	,
3	.5.	Low power timer (LPTIMER)7	,
3	.6.	VREF7	,
3	.7.	Segment LCD controller (SLCD)	,
3	.8.	Universal Serial Bus full-speed device interface (USBD)8	
4.	Oth	ner differences9	I
4	.1.	Memory9)
4	.2.	Number of peripherals9)
4	.3.	SRAM parity check function9)
5.	Rev	vision history10)

List of Table

able 3-1. Differences of FMC function	6
able 3-2. Differences of PMU function	6
able 3-3. Differences of RCU function	6
able 3-4. Differences of ADC function	7
able 3-5. Differences of LPTIMER function	7
able 3-6. Differences of VREF function	7
able 3-7. Differences of SLCD function	7
able 3-8. Differences of USBD function	8
able 4-1. Differences of memory size	9
able 4-2. Differences of number of peripherals	9
able 4-3. Differences of SRAM parity check	9
able 5-1. Revision history	10

1. Introduction

This application note introduces the characteristic differences between GD32L235 and GD32L233 product series, mainly for electric characteristics and peripheral function characteristics. The differences are described in the following paragraphs.

2. Electric characteristic differences

For details about the electrical characteristics, refer to the GD32L233xx Datasheet and GD32L235xx Datasheet.

3. Peripheral function differences

3.1. Flash memory controller (FMC)

The FMC function differences are reflected in the programming width, fast programming, Flash ECC function, page size and LVE sequence, which refers to <u>Table 3-1. Differences of</u> <u>FMC function</u>.

Part Numbers	Programming width	Fast program	Flash ECC check	Page size	LVE sequence
GD32L233xx	32bit	Supported	Not supported	4KB(GD32L233xC) 2KB(GD32L233xB) 1KB(GD32L233x8)	Supported
GD32L235xx	64bit	Not supported	Supported	1KB	Not supported

Table 3-1. Differences of FMC function

3.2. Power management unit (PMU)

The PMU function differences are reflected in the NPLDO supplies, power saving modes, EFLASH power domain configuration and COREOFF1 power domain configuration, which refers to <u>Table 3-2</u>. <u>Differences of PMU function</u>.

Part Numbers NPLDO supplies		Power saving modes	EFLASH power domain	COREOFF1 power domain
GD32L233xx	1.1V / 0.9V (configurable)	Run, Run1, Run2, Sleep, Sleep1, Sleep2, Deep-sleep, Deep-sleep 1, Deep-sleep 2 and Standby mode	Not configurable	Configurable
GD32L235xx	1.1V	Run, Sleep, Deep-sleep, Deep-sleep 1, Deep-sleep 2 and Standby mode	Configurable	Not configurable

3.3. Reset and clock unit (RCU)

The RCU function differences are reflected in the selection of the system clock (CK_SYS) source, which refers to <u>Table 3-1. Differences of FMC</u>.

Table 3-3. Differences of RCU function

Part Numbers	Select the system clock source
GD32L233xx	CK_IRC16M / CK_HXTAL / CK_PLL / CK_IRC48M
GD32L235xx	CK_IRC16M / CK_HXTAL / CK_PLL / CK_IRC48M / CK_IRC32K

3.4. Analog to digital converter (ADC)

The ADC function differences are reflected in the Single-ended and differential input channels, external trigger configuration and the internal temperature sensor output voltage (V_{temperature}), which refers to <u>Table 3-4</u>. Differences of ADC.

	Table 3-4.	Differences	of ADC	function
--	------------	-------------	--------	----------

Part Numbers	Single-ended and differential input channels	External trigger configuration	Internal temperature sensor output voltage (Vtemperature)
GD32L233xx	Not supported	Not supported	Temperature (°C) = ((V ₃₀ – V _{temperature}) / Avg_Slope) + 30
GD32L235xx	Supported	Supported	Temperature (°C) = ((V ₂₅ – V _{temperature}) / Avg_Slope) + 25

Note: V_{30} / V_{25} : Internal temperature sensor output voltage at 30°C / 25°C

3.5. Low power timer (LPTIMER)

The LPTIMER function differences are reflected in the counter width, which refers to <u>Table</u> <u>3-5. Differences of LPTIMER function</u>

Table 3-5. Differences of LPTIMER function

Part Numbers	Counter width
GD32L233xx	32bit
GD32L235xx	16bit

3.6. VREF

The VREF function differences are reflected in the internal reference voltage, which refers to *Table 3-6. Differences of VREF function*.

Table 3-6. Differences of VREF function

Part Numbers	Reference voltage
GD32L233xx	2.5V
GD32L235xx	2.5V / 1.5V (configurable)

3.7. Segment LCD controller (SLCD)

The SLCD function differences are reflected in the enhance mode and Internal voltage source, which refers to <u>Table 3-7. Differences of SLCD function</u>.

Table 3-7. Differences of SLCD function

Part Numbers	Enhance mode	Internal voltage source
	Supported	Use an internal charge
GD32L233XX	Supponed	pump
GD32L235xx Not supported		Use the VDD voltage

3.8. Universal Serial Bus full-speed device interface (USBD)

The USBD function differences are reflected in the clock frequency requirements and endpoint buffers, which refers to <u>Table 3-8. Differences of USBD function</u>.

Table 3-8. Differences of USBD function

Part Numbers	Clock frequency requirements	Endpoint buffers
GD32L233xx	CK_APB1≥24MHz	USBD has the dedicated 512-byte SRAM memory
		USBD and CAN share the dedicated 512-byte SRAM
GD32L235XX	CK_APB1212MHZ	memory

4. Other differences

4.1. Memory

Memory size difference refers to Table 4-1. Differences of memory size.

Table 4-1	Differences	of	memory	size
-----------	-------------	----	--------	------

Part Numbers	FLASH	SRAM
GD32L233xx	Up to 256KB	Up to 32KB
GD32L235xx	Up to 128KB	Up to 24KB

4.2. Number of peripherals

Number of peripherals difference refers to Table 4-2. Differences of number of peripherals.

	Table 4-2.	Differences of	number of	peripherals
--	------------	----------------	-----------	-------------

Part Numbers	CAN	LPUART	LPTIMER	TIMER
GD32L233xx	None	LPUART	LPTIMER	TIMER1/2/5/6/8/11
GD32L235xx	CAN	LPUART0/1	LPTIMER0/1	TIMER0/1/2/5/6/8/11/14/40

4.3. SRAM parity check function

SRAM parity check function difference refers to <u>Table 4-3. Differences of SRAM parity</u> <u>check</u>.

Table 4-3. Differences of SRAM parity check

Part Numbers	SRAM parity check function		
GD32L233xx	Not supported		
GD32L235xx	Supported		

5. Revision history

Table 5-1. Revision history

Revision No.	Description	Date
1.0	Initial Release	Apr.2, 2024

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2024 GigaDevice - All rights reserved