

GigaDevice Semiconductor Inc.

GD32F5xx Dual-bank Switch

Application Note

AN195

Revision 1.0

(Apr. 2024)

AN195
GD32F5xx Dual-bank Switch

2

 Table of Contents

Table of Contents ... 2

List of Figures .. 3

List of Tables .. 4

1. Introduction ... 5

2. Dual-bank switching principle ... 6

3. Software implementation ... 7

3.1. Software process flow ... 7

3.2. Test procedure and phenomena ... 9

4. Revision history .. 14

AN195
GD32F5xx Dual-bank Switch

3

List of Figures

Figure 3-1. Software flow diagram ... 8

Figure 3-2. Preprocessor symbols define of Keil project .. 9

Figure 3-3. Linker option of Keil project .. 9

Figure 3-4. User option of Keil project ... 10

Figure 3-5. Project.bin folder after compilation .. 10

Figure 3-6. Output app0.bin file .. 10

Figure 3-7. Download algorithm configuration of Keil project .. 12

Figure 3-8. Test results .. 13

AN195
GD32F5xx Dual-bank Switch

4

List of Tables

Table 3-1. Definition of app0.bin .. 11

Table 3-2. Definition of app1.bin .. 11

Table 3-3. Scatter-loading file .. 11

Table 4-1. Revision history .. 14

AN195
GD32F5xx Dual-bank Switch

5

1. Introduction

This application note is designed for the GD32F5xx dual-bank flash product. It introduces the

dual-bank code update and switch function. This application note is divided into two parts.

The first part introduces the implementation principle of dual-bank switching, and the second

part introduces the software implementation method.

 Evaluation board: GD32F527I-EVAL board

 Debugger: J-Link or GD-Link

 IDE: Keil 5.35

AN195
GD32F5xx Dual-bank Switch

6

2. Dual-bank switching principle

GD32F5xx flash memory structure is divided into 4MB dual-bank, 2MB dual-bank, 1MB single

bank, and 512KB single bank, each of which has bank1 extended flash (Bank1_Ex). The

Bank1_Ex starts at 0x08400000 and operates in the same way as bank1. When the

GD32F5xx dual block structure is adopted, bank0 is used for the first 2048KB and bank1 is

for the rest capacity. No waiting time within first 2048K bytes when CPU executes instructions

(in case that flash size less than 2048K, all memory is no waiting time). A long delay when

CPU fetches the instructions out of the range. The 4MB dual-block product is used in this

application note.

The SYSCFG_CFG0 register provides the FMC_SWP bit which can control the address

mapping switching between bank0 and bank1 of the main flash memory. When the bit is set

to 0, the bank0 of the main flash memory is mapped to the address 0x08000000, and the

bank1 of the main flash memory is mapped to the address 0x08100000 (2M products swap

0x08000000 and 0x08100000, 4M products swap 0x08000000 and 0x08200000). When the

bit is set to 1, the bank1 of the main flash memory is mapped to the address 0x0800 0000,

and the bank0 of the main flash memory is mapped to the address 0x081000000 (2M

products swap 0x08000000 and 0x08100000, 4M products swap 0x08000000 and

0x08200000). Please note setting FMC_SWP bit in SYSCFG will swap the bank0 and bank1

logical addresses in the bus matrix but does not affect the original erase address.

The BB bit is provided in the option bytes. When the bit is set to 0 (factory value) and configure

MCU boot from main flash, the MCU will boot from bank0. When the bit is set to 1 and

configure MCU boot from main flash, if there is no code in bank1 the MCU will boot from

bank0. If there is code in bank1 the MCU will boot from bank1. The internal implementation

principle is as follows: when MCU boots from the main flash memory, the system bootloader

will detect whether the BB bit is set or not. If the BB bit is set, the system bootloader will set

the FMC_SWP bit and detect whether bank1 has code. If bank1 has code, MCU will boot

from bank1 (the logical address still is 0x08000000).

The NWA bit is also provided in in the option bytes. When this bit is set to 0, the no waiting

time area is selected as bank1. When this bit is is set to 1 (factory value), the no waiting time

area is selected as bank0. This bit is only effective after power reset and only in the 4MB dual-

bank product. By configuring the bit, the no waiting time area can be configured to improve

the efficiency of code execution flexibly.

According to the above characteristics of GD32F5xx, GD32F5xx can realize the function of

updating bank1 code when bank0 runs the code. After bank1 code is updated, the function of

switching to bank1 code after power reset is realized by configuring the BB bit and NWA bit

of the option byte. When bank1 runs the code, update the bank0 code. After the bank0 code

is updated, the function of switching to bank0 code operation is realized by configuring the

BB bit and NWA bit of the option byte after the power is reset.

AN195
GD32F5xx Dual-bank Switch

7

3. Software implementation

3.1. Software process flow

In this software implementation scheme, two sets of codes for bank0 APP0 and bank1 APP1

are stored in an external Nand Flash in advance. After detecting the corresponding key press,

the software programs the code in Nand Flash to bank0 or bank1. After the code programming

is completed, the software configures the option byte BB bit and NWA bit, and makes the

option byte BB bit and NWA bit effective by making the MCU enter standby mode and then

wake up MCU. The specific implementation process is shown in Figure 3-1. Software flow

diagram.

AN195
GD32F5xx Dual-bank Switch

8

Figure 3-1. Software flow diagram

initiate

Code run in bank0 and LED1
spark.

print("code run in bank0!
please press Tamper Key to
update bank1 APP1 code!\r\

n");

Press Tamper Key ?

The app1_update flag is set to
update the bank1 APP1 code.

Print the result of updating bank1 APP1
code operation.

If update successful and print("update
bank1 APP1 code success!\r\n") and set

bank1_val flag.
If update failed and print("update bank1

APP1 code fail!\r\n");

bank1_val == 1？

Configure the swap function
related control bits and

 print("APP1 update and bank
swap configuration completed,

MCU will enter to standby,
please press Wakeup key to

wake up MCU!\r\n");

Press Wakeup Key ?

YES

NO

Code run in bank1 and LED2
spark.

print("code run in bank1!
please press Tamper Key to
update bank0 APP0 code!\r\

n");

Press User Key ?

The app0_update flag is set to
update the bank0 APP0 code.

Print the result of updating bank0 APP0
code operation.

If update successful and print("update
bank0 APP0 code success!\r\n"); and set

bank0_val flag.
If update failed and print("update bank0

APP0 code fail!\r\n");

bank0_val == 1？

Configure the swap function
related control bits and

 print("APP0 update and bank
swap configuration completed,

MCU will enter to standby,
please press Wakeup key to

wake up MCU!\r\n");

Press Wakeup Key ?

YES

BB bit is set?

MCU enter standby mode MCU enter standby mode

YES YES

NO

YES

NO

YES YES

NO NO

NO

NO

AN195
GD32F5xx Dual-bank Switch

9

3.2. Test procedure and phenomena

1. Use macro APP0 and APP1 to compile the corresponding app0.bin and app1.bin.

app0.bin and app1.bin correspond to the codes of bank0 and bank1 respectively.

Please note when compiling the project, the Linker option uses the specified Project.sct

file which is provided under the Template\Keil_project path, as shown in Figure 3-2.

Preprocessor symbols define of Keil project. In the User option of Keil project,

configure the bin file output command after the project compilation is completed, as

shown in Figure 3-3. Linker option of Keil project. Please choose the local

installation path of Keil.

Figure 3-2. Preprocessor symbols define of Keil project

Figure 3-3. Linker option of Keil project

AN195
GD32F5xx Dual-bank Switch

10

Figure 3-4. User option of Keil project

2. After compiling the Project, the project will generate three section bins in the

Template\sim_3in1\ project.bin folder, which are ER_IROM1, ER_IROM2, and

ER_IROM3.

Figure 3-5. Project.bin folder after compilation

When the preprocessor macro used is APP0, after compiling the project, change

ER_IROM1’s name to app0.bin, and use bin2array.exe software to convert app0.bin to

app0.txt file, and then put the array in app0.txt into app0_code[] array in app0.h file, as

shown in Table 3-1. Definition of app0.bin. The generates app1.bin by same method

and puts it into the app1_code[] array of app1.h file, as shown in Table 3-2. Definition

of app1.bin.

Figure 3-6. Output app0.bin file

AN195
GD32F5xx Dual-bank Switch

11

Table 3-1. Definition of app0.bin

const uint8_t app0_code[]__attribute__((used))__attribute__((section ("APP0_Array")))=

{0xB0,0x0C,0x00,0x20,0xF5,0x01,0x00,0x08,0xC5,0x07,0x00,0x08,0xBD,0x07,0x00,0x08,

…};

Table 3-2. Definition of app1.bin

const uint8_t app1_code[]__attribute__((used))__attribute__((section ("APP1_Array")))=

{0xB0,0x0C,0x00,0x20,0xF5,0x01,0x00,0x08,0xC5,0x07,0x00,0x08,0xBD,0x07,0x00,0x08,

…};

3. Load the app0.bin and app1.bin files into Nand Flash using scatter-loading method. In

this way, the main flash and Nand flash can be burned simultaneously when the project

code is downloaded.

Table 3-3. Scatter-loading file

; ***

; *** Scatter-Loading Description File generated by uVision ***

; ***

LR_IROM1 0x08000000 0x00780000 { ; load region size_region

 ER_IROM1 0x08000000 0x00780000 { ; load address = execution address

 *.o (RESET, +First)

 *(InRoot$$Sections)

 .ANY (+RO)

 .ANY (+XO)

 }

 RW_IRAM1 0x20000000 0x00080000 { ; RW data

 .ANY (+RW +ZI)

 }

}

LR_IROM2 0x70000000 0x2000000 {

 ER_IROM2 0x70000000 0x2000000 { ; load address = execution address

 *(APP0_Array)

 }

}

LR_IROM3 0x72000000 0x6000000 {

 ER_IROM3 0x72000000 0x6000000 { ; load address = execution address

 *(APP1_Array)

 }

}

4. After completing the above operations, select the project preprocessor macro definition

as APP0, compile project and download the code to main flash and Nand flash. User

AN195
GD32F5xx Dual-bank Switch

12

need to make the GD32F5_NANDFLASH download algorithm in advance and place the

download algorithm in the Keil installation path, in this case the path is

C:\Keil_v535\ARM\Flash. Add GD32F5xx Flash download algorithm and

GD32F5_NANDFLASH download algorithm in Keil "Options->Debug->Settings->Flash

Download" option, as shown in Figure 3-7. Download algorithm configuration of Keil

project. Please note that before downloading the code, please keep the option bytes BB

and NWA bits as factory default values, BB bits as 0 and NWA bits as 1. If user encounter

an error while downloading the code, please erase the whole piece before downloading.

Figure 3-7. Download algorithm configuration of Keil project

5. After downloading the code, reset the MCU and the code starts to run. Serial output

operation information and operation tips.

When running bank0 code, LED1 blinks and the serial port outputs "code run in bank0!

please press Tamper Key to update bank1 APP1 code!” .

When user presses Tamper key, the software updates the bank1 APP1 code. After the

update is completed, the serial port outputs "update bank1 APP1 code success! APP1

update and bank swap configuration completed, MCU will enter to standby, please press

Wakeup key to wake up MCU!”. MCU completes bank switching and enters standby

mode.

At this time, if the user presses the Wakeup key, the MCU switches to bank1 code

running and the serial port output "code run in bank1! please press User Key to update

bank0 APP0 code!”. LED2 blinks.

When user presses the User key and the software updates the bank0 APP0 code. After

the update is completed, the serial port outputs "update bank0 APP0 code success!

APP0 update and bank swap configuration completed, MCU will enter to standby, please

press Wakeup key to wake up MCU! ”. MCU completes bank switching and enters

AN195
GD32F5xx Dual-bank Switch

13

standby mode.

At this time, if the user presses the Wakeup key, the MCU switches to the bank0 code to

run, and the serial port outputs "code run in bank0! please press Tamper Key to update

bank1 APP1 code!”. LED1 blinks.

Figure 3-8. Test results

AN195
GD32F5xx Dual-bank Switch

14

4. Revision history

Table 4-1. Revision history

Revision No. Description Date

1.0 Initial Release Apr.23 2024

AN195
GD32F5xx Dual-bank Switch

15

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any

product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and

treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and

treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and

brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability

arising out of the application or use of any Product described in this document. Any information provided in this document is provided

only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality

and safety of any application made of this information and any resulting product. Except for customized products which has been

expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business,

industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components

in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control

instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments,

life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution

control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury,

death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling

the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers

shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising

from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it’s suppliers

and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or

death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes,

corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2024 GigaDevice – All rights reserved

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Dual-bank switching principle
	3. Software implementation
	3.1. Software process flow
	3.2. Test procedure and phenomena

	4. Revision history

