GigaDevice Semiconductor Inc.

Device limitations of GD32F47x/F42x

Errata Sheet

Table of Contents

Table	of Contents2
List of	Figures4
List of	Tables5
1. lı	ntroduction
1.1.	Revision identification
1.2.	Summary of device limitations
2. C	Descriptions of device limitations
2.1.	PMU
2.1.1	 Standby mode cannot be waked up due to frequent wakeup signals before or after entering standby mode
2.2.	GPIO
2.2.1	1. IO compensation invalidation
2.3.	ADC
2.3. ² 2.3.2	 ADC samples abnormally when using both 6-bit sampling resolution and MSB alignment 8 ADC alignment mode is not consistent with the user manual description
2.4.	RTC9
2.4.1	1. Calibrate abnormally when using both smooth digital calibration and FREQI calibration 9
2.5.	TIMER
2.5.′	1. The shadow preloaded value takes effect only on the rising edge of the counter after modification
2.5.2	2. Count error when timer works at single pulse mode
2.6.	USART
2.6.7	 Mute mode can be waked up as long as the USART_CTL0 register is operated after mute mode is enabled
2.7.	I2C 11
2.7.1	1. I2C_FCTL register is only configurable on GD32F470xx11
2.8.	SDIO 11
2.8.	1. Do not support low power mode11
2.9. 2.9.7	EXMC 11 1. Auto refresh function of SDRAM controller is influenced by other EXMC controller 11
2.10.	ENET 12
2.10	0.1. Data reception faults in MII mode
2.10	J.2. Reception data frame is dropped when enable hardware checksum and the header checksum is 0x0000

2	2.11.	Core	13
	2.11.1.	VDIV or VSQRT instructions might not complete correctly when very short ISRs are used .	13
3.	Rev	vision history	15

List of Figures

gure 1-1. Device revision code of GD32F47x/F42x	6
	•

List of Tables

Table 1-1. Applicable products	6
Table 1-2. Device limitations	6
Table 2-1. Alignment mode of routine conversion	9
Table 3-1. Revision history1	15

1. Introduction

This document applies to GD32F47x/F42x product series, as shown in <u>Table 1-1. Applicable</u> <u>products</u>. It provides the technical details that need to be paid attention to in the process of using GD32 MCU, as well as solutions to related problems.

Table 1-1. Applicable products

Туре	Part Numbers
	GD32F425xx series
MCU	GD32F427xx series
	GD32F470xx series

1.1. Revision identification

The device revision can be determined by the mark on the top of the package. The 1st code on the line 3 of the mark represents product revision code. As the picture shown in <u>Figure</u> <u>1-1. Device revision code of GD32F47x/F42x</u>.

Figure 1-1. Device revision code of GD32F47x/F42x

1.2. Summary of device limitations

The device limitations of GD32F47x/F42x are shown in <u>*Table 1-2. Device limitations*</u>, please refer to section 2 for more details.

Modulo	Limitotions	Workaround					
Module	Limitations	Rev. Code A	Rev. Code B				
PMU	Standby mode cannot be waked up due to frequent wakeup signals before or after entering standby mode	Ν	Ν				
GPIO	IO compensation invalidation	Ν					
ADC	ADC samples abnormally when using both 6-	Y	Y				

Table 1-2. Device limitations

Device limitations of GD32F47x/F42x

Madada	Limitations	Workaround				
woaule	Limitations	Rev. Code A	Rev. Code B			
	bit sampling resolution and MSB alignment					
	ADC alignment mode is not consistent with	V	V			
	the user manual description	r	I			
PTC	Calibrate abnormally when using both smooth	V	V			
RIC	digital calibration and FREQI calibration	I	Γ			
	The shadow preloaded value takes effect only					
	on the rising edge of the counter after	Ν	Ν			
TIMER	modification					
	Count error when timer works at single pulse	V	Y			
	mode		I			
	Mute mode can be waked up as long as the					
USART	USART_CTL0 register is operated after mute	Y	Y			
	mode is enabled					
120	I2C_FCTL register is only configurable on	N	Ν			
.20	GD32F470xx					
SDIO	Do not support low power mode	Ν	Ν			
EXMC	Auto refresh function of SDRAM controller is	v	V			
	influenced by other EXMC controller	I	I			
	Data reception faults in MII mode	Y	Y			
ENET	Reception data frame is dropped when enable					
	hardware checksum and the header	Y	Y			
	checksum is 0x0000					
	VDIV or VSQRT instructions might not					
Core	complete correctly when very short ISRs are	Y	Y			
	used					

Note:

Y = Limitation present, workaround available

N = Limitation present, no workaround available

'--' = Limitation fixed

2. Descriptions of device limitations

2.1. PMU

2.1.1. Standby mode cannot be waked up due to frequent wakeup signals

before or after entering standby mode

Description & impact

When reset the internal signal STBY_CTL to enter to standby mode, if the T_{glitch} is smaller than 100ns, which will cause the mcu cannot be waked up. The narrow glitch will result in incorrect Vcore voltage.

Note: The T_{glitch} is the time between STBY_CTL low level and the wakeup signal (PA0 high level)

Workarounds

Not available.

2.2. GPIO

2.2.1. IO compensation invalidation

Description & impact

IO compensation function is invalided.

Workarounds

Not available.

2.3. ADC

2.3.1. ADC samples abnormally when using both 6-bit sampling resolution and

MSB alignment

Description & impact

ADC samples abnormally when using both 6-bit sampling resolution and MSB alignment mode.

Workarounds

Use LSB alignment mode or use 8-bit sampling resolution.

2.3.2. ADC alignment mode is not consistent with the user manual description

Description & impact

ADC alignment mode is not consistent with the user manual description.

Workarounds

The right alignment mode description is as follow:

Alignmen	Resolutio	bit1	bit1	bit1	bit1	bit1	bit1	bit									
t	n	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0
	12bit	0x0				data											
	10bit	0x0				data										0>	‹ 0
LOD	8bit	0x0				data								0x0			
	6bit		0	x0	data						0x0						
	12bit	data									0>	٥					
MOD	10bit	bit data						0x0									
IVIOD	8bit	data 0x0															
	6bit	invalid															

 Table 2-1. Alignment mode of routine conversion

2.4. RTC

2.4.1. Calibrate abnormally when using both smooth digital calibration and

FREQI calibration

Description & impact

Using both smooth digital calibration and FREQI calibration will cause calibration result abnormal.

Workarounds

- 1) Use RTC shift function to replace smooth digital calibration, such as setting A1S bit and configuring appropriate SFS bits to satisfy the accuracy requirement.
- 2) Use two 16 seconds calibration window to replace one 32 seconds calibration window.

2.5. TIMER

2.5.1. The shadow preloaded value takes effect only on the rising edge of the

counter after modification

Description & impact

The preloaded value takes effect only on the rising edge of the counter after modification which may cause problem to pwm applications with high timing requirements.

Workarounds

Not available.

2.5.2. Count error when timer works at single pulse mode

Description & impact

Timer works at single pulse mode and CK_APBx is CK_AHB / 4 and CK_TIMER is CK_AHB / 2, which causes count error.

Workarounds

- 1) Do not use above clock configuration.
- 2) Use timer update interrupt to clear error count.

2.6. USART

2.6.1. Mute mode can be waked up as long as the USART_CTL0 register is

operated after mute mode is enabled

Description & impact

After mute mode is enabled, the operation on USART_CTL0 register will wake up USART from mute mode.

Workarounds

When mute mode is enabled and USART uses hardware method to detect idle frame wakeup, operation on USART_CTL0 register is not allowed. When mute mode is enabled and USART uses software method to detect idle frame wakeup, operation on USART_CTL0 register only be allowed when need to exit mute mode.

2.7. I2C

2.7.1. I2C_FCTL register is only configurable on GD32F470xx

Description & impact

The filter control register (I2C_FCTL) is only configurable on GD32F470xx but not on GD32F425xx or GD32F427xx.

Workarounds

Not available.

2.8. SDIO

2.8.1. Do not support low power mode

Description & impact

SDIO_CLK can not be closed automatically in bus idle state when CLKPWRSAV is set in SDIO_CLKCTL register.

Workarounds

Not available.

2.9. EXMC

2.9.1. Auto refresh function of SDRAM controller is influenced by other EXMC

controller

Description & impact

Auto refresh function of SDRAM controller is influenced by other EXMC controller. When SDRAM controller execute auto refresh command, if the SDRAM bank is active, the precharge command shall be generated, which need EXMC_A10 port be 1. At that time, EXMC_A10 port is used in other EXMC controller, then the SDRAM auto refresh command execute abnormally which lead SDRAM data error.

Workarounds

Step1: enable EXMC SDRAM controller works simultaneously with other controllers after EXMC initialization.

/* code example */ REG32(EXMC + 0x184U) = 0x9EF02310U; EXMC_SDRSCTL |= BIT(9);

Step2:

Method 1: When SDRAM controller selects the BANK address of the operation, the pin output does not use the AF function and accesses the corresponding BANK directly through GPIO to drive the BANK address.

Method 2: Before EXMC operates on NAND FLASH, the global precharge instruction of SDRAM is added, so that the self-refresh operation of SDRAM does not need to rely on the original precharge instruction, so even if the self-refresh and nand occur at the same time, there is no error.

/* code example */

REG32(0xA0000150U) = (uint32_t)0x00000012U; while(0x000000000 != (REG32(0xA0000158U) & 0x00000020)) {

2.10. ENET

2.10.1. Data reception faults in MII mode

Description & impact

ENET_MII_COL / ENET_MII_CRS / ENET_MII_RX_ER pins are floating on MCU and external PHY has no these pins, which will cause data reception faults.

Workarounds

Configure ENET_MII_COL pin and ENET_MII_RX_ER pin as AF function and keep them low level. The ENET_MII_CRS pin mode and status can be ignored.

2.10.2. Reception data frame is dropped when enable hardware checksum and

the header checksum is 0x0000

Description & impact

When enable hardware checksum and header checksum is 0x0000, this frame will be mistaken for error frame and dropped by hardware.

Workarounds

Use software checksum.

2.11. Core

2.11.1. VDIV or VSQRT instructions might not complete correctly when very

short ISRs are used

This limitation refers to Arm ID number 776924 in "Cortex-M4 & Cortex-M4 with FPU Software Developers Errata Notice".

Description & impact

The VDIV and VSQRT instructions take 14 cycles to execute. When an interrupt is taken a VDIV or VSQRT instruction is not terminated, and completes its execution while the interrupt stacking occurs. If lazy context save of floating point state is enabled then the automatic stacking of the floating point context does not occur until a floating point instruction is executed inside the interrupt service routine.

Lazy context save is enabled by default. When it is enabled, the minimum time for the first instruction in the interrupt service routine to start executing is 12 cycles. In certain timing conditions, and if there is only one or two instructions inside the interrupt service routine, then the VDIV or VSQRT instruction might not write its result to the register bank or to the FPSCR.

The failure occurring conditions are as follows:

- 1) The floating point unit is enabled.
- 2) Lazy context saving is not disabled.
- 3) A VDIV or VSQRT is executed.
- 4) The destination register for the VDIV or VSQRT is one of s0 s15.
- 5) An interrupt occurs and is taken.
- 6) The interrupt service routine being executed does not contain a floating point instruction.
- 7) Within 14 cycles after the VDIV or VSQRT is executed, an interrupt return is executed.

A minimum of 12 of these 14 cycles are utilized for the context state stacking, which leaves 2 cycles for instructions inside the interrupt service routine, or 2 wait states applied to the entire stacking sequence (which means that it is not a constant wait state for every access).

In general, this means that if the memory system inserts wait states for stack transactions then this erratum cannot be observed.

The implications of this limitation is that the VDIV or VQSRT instruction does not complete correctly and the register bank and FPSCR are not updated, which means that these registers hold incorrect, out of date, data.

Workarounds

A workaround is only required if the floating point unit is enabled. A workaround is not required if the stack is in external memory.

There are two possible workarounds:

- 1) Disable lazy context save of floating point state by clearing LSPEN to 0 (bit 30 of the FPCCR at address 0xE000EF34).
- 2) Ensure that every interrupt service routine contains more than 2 instructions in addition to the exception return instruction.

3. Revision history

Table 3-1. Revision history

Revision No.	Description	Date
1.0	Initial Release	Mar.16 2023
1.1	Update description of chapter 2.8.1	Apr.3 2023
1.2	Update note of chapter 1.2	Apr.6 2023
1.3	 Add PMU limitation, referring to chapter 2.1.1 Add core limitation, referring to chapter 2.11.1 	Nov.2 2023
1.4	Update workarounds of EXMC, refer to <u>Auto</u> refresh function of SDRAM controller is influenced by other EXMC controller	Jul.18 2024

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2024 GigaDevice – All rights reserved