

GigaDevice Semiconductor Inc.

QSPI Clock Adjustment Method in High-

speed Mode for GD32G5x3 Series

Application Note

AN210

Revision 1.0

(June. 2024)

AN210
QSPI Clock Adjustment Method in High-speed Mode for

GD32G5x3 Series

2

Table of Contents

Table of Contents ... 2

List of Tables .. 3

1. Introduction ... 4

2. Clock sampling point adjustment function bit introduction 5

3. Clock sampling point adjustment function software implementation 6

3.1. Adjust the output clock ... 6

3.2. Coarse adjustment of the receiving clock ... 9

3.3. Fine adjustment of the receiving clock .. 11

4. Revision history .. 18

AN210
QSPI Clock Adjustment Method in High-speed Mode for

GD32G5x3 Series

3

List of Tables

Table 2-1. Clock sampling point adjustment function bit .. 5

Table 3-1. Output clock adjustment code .. 7

Table 3-2. Coarse adjustment of the receiving clock code .. 9

Table 3-3. Fine adjustment of the receiving clock code (RCKSEL = 0) ... 11

Table 3-4. Fine adjustment of the receiving clock code (RCKSEL = 1) .. 14

Table 4-1. Revision history .. 18

AN210
QSPI Clock Adjustment Method in High-speed Mode for

GD32G5x3 Series

4

1. Introduction

The QSPI is a specialized interface that can communicate with flash memories. This interface

supports single, dual or quad SPI Flash. It can operate in normal mode, read polling mode

and memory map mode. The QSPI of GD32G5x3 supports SDR mode and DDR mode with

a clock of up to 200M. When reading data, it supports configuring the sampling clock to be

the DQS signal provided by the external device or the internal QSPI SCK. In DDR mode, high-

speed peripherals require high accuracy of clock sampling points. The QSPI module provides

some functions to adjust the clock sampling point. This application note introduces the method

of how to adjust the clock sampling point in high-speed mode.

AN210
QSPI Clock Adjustment Method in High-speed Mode for

GD32G5x3 Series

5

2. Clock sampling point adjustment function bit

introduction

The QSPI module provides a number of register bits that can be used to adjust the clock

sample points. Please refer to Table 2-1. Clock sampling point adjustment function bit.

Table 2-1. Clock sampling point adjustment function bit

Register Bit name Function descriptions

QSPI_CTL

OCKDV[3:0]

Output clock delay value when clock is not

divided.

These bits only useful when OCKDEN is enabled.

OCKDEN Output clock delay enable

SSAMPLE

Sample delay, allows QSPI to be configured to

sample data at 1/2 SCK clock cycle after flash

memory drive.

QSPI_DCFG

CSNCKM

Select whether the CSN falls and rises one or two

SCK clock cycles before the first SCK effective

rising edge and after the last SCK effective rising

edge.

DLYSCEN
Delay scan enable. The CPDM module is used to

fine-tune the clock.

RCKSEL

Select the receiving clock source is the SCK

generated inside the QSPI or the DQS provided

by an external device.

RXSFT[2:0]

Shift receive step. This bit field can be used to

adjust the received sampling point together with

the SSAMPLE bit when the rececive data delay

more than 0.5 cycle.

QSPI_TCFG DDRHEN

DDR output hold enable. In DDR mode, when the

clock is divided, the QSPI output clock cycle is

delayed by 1/4 before the data is output.

AN210
QSPI Clock Adjustment Method in High-speed Mode for

GD32G5x3 Series

6

3. Clock sampling point adjustment function software

implementation

This application note provides some methods to adjust the data sampling point in high-speed

mode or in the case of bad external environment. The following methods can be used together

to achieve the purpose of reading and writing data stably in high-speed mode.

3.1. Adjust the output clock

Configure the OCKDEN bit and OCKDV bit field to enable the output clock delay function and

adjust the output clock sample point.

Examples of usage:

First, configure the QSPI clock to 25M, erase and program the data to the target flash. Read

back and verify that the expected data has been correctly written to flash.

Configure flash to DTR mode.

Configure the QSPI clock to 200M, and use the DDR four-wire read command (0xED) to read

back and verify that the read out data is not the expected data.

Enable the output clock delay function and accumulate the clock delay value (0~15) gradually.

Use the DDR four-line read command (0xED) to read back and verify, until the data read out

is the expected data. It indicates that the accurate sampling point has been found. In order to

improve the tolerance of the code, the delay value at this time is denoted as down_ockdv,

and the clock delay value (0~15) is accumulated gradually, and use the DDR four-line read

command (0xED) to read back and verify, until the data read out is not equal to the expected

data, and the delay value at this time is denoted as up_ockdv. The lower and upper limits are

averaged and used as the final configuration parameters. The current configuration can be

used for subsequent operations. Please refer to Table 3-1. Output clock adjustment code

for the code.

Note:

1. QSPI only supports the use of output delay function when clock is not divided. In DDR

mode, the DDRHEN bit can be configured to delay 1/4 QSPI output clock cycle before output

data.

2. In DDR mode, it is recommended to set the CSNCKM bit to 1, that is, CSN is selected to

pull down two SCK clock cycles before the first effective rising edge of SCK and to pull up two

SCK clock cycles after the last effective rising edge of SCK.

AN210
QSPI Clock Adjustment Method in High-speed Mode for

GD32G5x3 Series

7

Table 3-1. Output clock adjustment code

 ockdv = 0;

 count1 = 0;

 count2 = 0;

 count3 = 0;

 flag1 = 0;

 flag2 = 0;

 /* enable QSPI output clock delay */

 qspi_output_clock_delay_enable();

 /* select CSN falls and rises 2 sck cycles */

 qspi_csn_edge_cycle(QSPI_CSN_2_CYCLE);

 while(ockdv <= 15){

 /* configure the delay value */

 QSPI_CTL &= ~QSPI_CTL_OCKDV;

 QSPI_CTL |= ockdv << 12U;

 qspi_enable();

 qspi_cmd.instruction = 0xED;

 qspi_cmd.instruction_mode = QSPI_INSTRUCTION_4_LINES;

 qspi_cmd.addr = 0x1000;

 qspi_cmd.addr_mode = QSPI_ADDR_4_LINES;

 qspi_cmd.addr_size = QSPI_ADDR_24_BITS;

 qspi_cmd.altebytes = 0xFE;

 qspi_cmd.altebytes_mode = QSPI_ALTE_BYTES_4_LINES;

 qspi_cmd.altebytes_size = QSPI_ALTE_BYTES_8_BITS;

 qspi_cmd.data_mode = QSPI_DATA_4_LINES;

 qspi_cmd.data_length = 1;

 qspi_cmd.dummycycles = 15;

 qspi_cmd.sioo_mode = QSPI_SIOO_INST_EVERY_CMD;

 qspi_cmd.trans_rate = QSPI_TCFG_DDREN;

 qspi_cmd.trans_delay = 0;

 qspi_command_config(&qspi_cmd);

 QSPI_DTLEN = buf_size - 1;

 qspi_data_receive(rx_buffer);

 /* wait for the data receive completed */

 while(0U == qspi_flag_get(QSPI_FLAG_TC)){

 }

 /* clear the TC flag */

AN210
QSPI Clock Adjustment Method in High-speed Mode for

GD32G5x3 Series

8

 qspi_flag_clear(QSPI_FLAG_TC);

 qspi_disable();

 /* compare the data written and read out until they are equal */

 if(memory_compare(rx_buffer, tx_buffer, buf_size)){

 if(count1 == 0){

 /* the first time read-back verification is correct, record the down limit */

 down_ockdv = ockdv;

 }

 /* read back verification succeeds once, count1 is incremented by one */

 count1++;

 if(ockdv == 15U){

 /* record the up limit.

 If the value is 15 and the read-back verification is correct,

 the up limit is recorded as 15 */

 up_ockdv = ockdv;

 break;

 }

 }

 else{

 /* read back verification fails once, count2 is incremented by one */

 count2++;

 }

 /* read back and verify once, count3 is incremented by one */

 count3++;

 if((count3 == 1) && (count2 == 1)){

 flag1 = 1;

 } else if((count3 == 1) && (count1 == 1)){

 flag2 = 1;

 }

 if((flag1 == 1) && (count1 == 1)){

 flag2 = 1;

 count1 += count2;

 } else if((flag2 == 1) && (count3 != count1)){

 /* read-back verification runs from success to failure,

 record the up limit */

 up_ockdv = ockdv;

 break;

AN210
QSPI Clock Adjustment Method in High-speed Mode for

GD32G5x3 Series

9

 }

 ockdv++;

 }

 /* use the calculated delay value to configure */

 ockdv = (up_ockdv + down_ockdv)/2;

 QSPI_CTL &= ~QSPI_CTL_OCKDV;

 QSPI_CTL |= ockdv << 12U;

 qspi_enable();

3.2. Coarse adjustment of the receiving clock

Configure the RXSFT bit field and the SSAMPLE bit to realize the adjustment of the received

sampling point with a step size of 0.5 cycle.

Examples of usage:

First, configure the QSPI clock to 25M, erase and program the data to the target flash. Read

back and verify that the expected data has been correctly written to flash.

Configure the QSPI clock to 200M, and use the SDR four-wire fast read command (0xEB)

to read back and verify that the read out data is not the expected data.

Configure the RXSFT bit field and SSAMPLE bit and accumulate gradually. use the SDR four-

wire fast read command (0xEB) to read back and verify, until the data read out is the expected

data. It indicates that the accurate sampling point has been found. The current configuration

can be used for subsequent operations. Please refer to Table 3-2. Coarse adjustment of

the receiving clock code for the code.

Table 3-2. Coarse adjustment of the receiving clock code

 i = 0;

 j = 0;

 while(i < 16){

 /* quad fast read */

 qspi_cmd.instruction = 0xEB;

 qspi_cmd.instruction_mode = QSPI_INSTRUCTION_1_LINE;

 qspi_cmd.addr = 0x1000;

 qspi_cmd.addr_mode = QSPI_ADDR_4_LINES;

 qspi_cmd.addr_size = QSPI_ADDR_24_BITS;

 qspi_cmd.altebytes = 0xFE;

 qspi_cmd.altebytes_mode = QSPI_ALTE_BYTES_4_LINES;

AN210
QSPI Clock Adjustment Method in High-speed Mode for

GD32G5x3 Series

10

 qspi_cmd.altebytes_size = QSPI_ALTE_BYTES_8_BITS;

 qspi_cmd.data_mode = QSPI_DATA_4_LINES;

 qspi_cmd.data_length = 1;

 qspi_cmd.dummycycles = 14;

 qspi_cmd.sioo_mode = QSPI_SIOO_INST_EVERY_CMD;

 qspi_cmd.trans_rate = 0;

 qspi_cmd.trans_delay = 0;

 qspi_command_config(&qspi_cmd);

 QSPI_DTLEN = buf_size - 1;

 qspi_data_receive(rx_buffer);

 /* wait for the data receive completed */

 while(0U == qspi_flag_get(QSPI_FLAG_TC)){

 }

 /* clear the TC flag */

 qspi_flag_clear(QSPI_FLAG_TC);

 /* compare the data written and read out until they are equal.

 At this point, it indicates that the appropriate sampling point has been adjusted. */

 if(memory_compare(rx_buffer, tx_buffer, buf_size)){

 break;

 } else {

 if(j == 0){

 QSPI_CTL |= QSPI_SAMPLE_SHIFTING_HALFCYCLE;

 j = 1;

 i++;

 }

 else{

 QSPI_CTL &= ~QSPI_SAMPLE_SHIFTING_HALFCYCLE;

 j = 0;

 i++;

 }

 if((i%2 == 0) && (i != 0)){

 qspi_dcfg = QSPI_DCFG;

 qspi_dcfg &= ~QSPI_SHIFTING_7_CYCLE;

 qspi_dcfg |= DCFG_SSAMPLE(i/2);

 QSPI_DCFG = qspi_dcfg;

 }

 }

 }

AN210
QSPI Clock Adjustment Method in High-speed Mode for

GD32G5x3 Series

11

3.3. Fine adjustment of the receiving clock

Configure the DLYSCEN bit to enable the CPDM function and adjust the received sampling

point.

Examples of usage:

First, configure the QSPI clock to 25M, erase and program the data to the target flash. Read

back and verify that the expected data has been correctly written to flash.

Configure flash to DTR mode.

Configure the QSPI clock to 200M, and use the DDR four-wire read command (0xED) to read

back and verify that the read out data is not the expected data.

Enable the delay line sampling module and CPDM and keep the CPDM output clock phase

equal to the input clock. Accumulate the delay step count value (0~127) gradually. Use the

DDR four-line read command (0xED) to read back and verify, until the data read out is the

expected data. It indicates that the accurate sampling point has been found. In order to

improve the tolerance of the code, the delay step count value at this time is denoted as

down_dlstcnt, and the delay step count value (0~127) is accumulated gradually, and use the

DDR four-line read command (0xED) to read back and verify, until the data read out is not

equal to the expected data, and the delay step count value at this time is denoted as

up_dlstcnt. The lower and upper limits are averaged and used as the final configuration

parameters. The current configuration can be used for subsequent operations. Please refer

to Table 3-3. Fine adjustment of the receiving clock code (RCKSEL = 0) and Table

3-4. Fine adjustment of the receiving clock code (RCKSEL = 1) for the code.

Note:

1. The receiving data clock can be configured to the DQS signal provided by external flash or

SCK, which both can be adjusted by CPDM.

2. When the receiving data clock is configured as SCK, the DLYSCEN bit should be set first

to enable SCK to be output to the CPDM module continuously during each adjustment, and

the CPDM should adjust it using the configured parameters. After adjustment, the DLYSCEN

bit should be cleared to turn off SCK continuous output to CPDM.

3. When the received data clock is configured as DQS, user not need to configure the

DLYSCEN bit at this time, and can directly use the CPDM clock adjustment function. However,

it needs to perform reading operations twice to ensure that the CPDM state is stable.

Table 3-3. Fine adjustment of the receiving clock code (RCKSEL = 0)

 count1 = 0;

 count2 = 0;

 count3 = 0;

AN210
QSPI Clock Adjustment Method in High-speed Mode for

GD32G5x3 Series

12

 flag1 = 0;

 flag2 = 0;

temp_dlstcnt = 0;

 k = 0;

 while(temp_dlstcnt <= 127){

 /* configure the delay step count value */

 CPDM_CTL = CPDM_CTL_CPDMEN | CPDM_CTL_DLSEN;

 CPDM_CFG = (temp_dlstcnt << 8U) | 1;

 CPDM_CTL = CPDM_CTL_CPDMEN;

 /* enable QSPI clock phase delay function */

 qspi_disable();

 qspi_delay_scan_enable();

 for(k = 0; k < 20; k++);

 qspi_delay_scan_disable();

 qspi_enable();

 qspi_cmd.instruction = 0xED;

 qspi_cmd.instruction_mode = QSPI_INSTRUCTION_4_LINES;

 qspi_cmd.addr = 0x1000;

 qspi_cmd.addr_mode = QSPI_ADDR_4_LINES;

 qspi_cmd.addr_size = QSPI_ADDR_24_BITS;

 qspi_cmd.altebytes = 0xFE;

 qspi_cmd.altebytes_mode = QSPI_ALTE_BYTES_4_LINES;

 qspi_cmd.altebytes_size = QSPI_ALTE_BYTES_8_BITS;

 qspi_cmd.data_mode = QSPI_DATA_4_LINES;

 qspi_cmd.data_length = 1;

 qspi_cmd.dummycycles = 15;

 qspi_cmd.sioo_mode = QSPI_SIOO_INST_EVERY_CMD;

 qspi_cmd.trans_rate = QSPI_TCFG_DDREN;

 qspi_cmd.trans_delay = 0;

 qspi_command_config(&qspi_cmd);

 QSPI_DTLEN = buf_size - 1;

 qspi_data_receive(rx_buffer);

 /* wait for the data receive completed */

 while(0U == qspi_flag_get(QSPI_FLAG_TC)){

 }

 /* clear the TC flag */

 qspi_flag_clear(QSPI_FLAG_TC);

AN210
QSPI Clock Adjustment Method in High-speed Mode for

GD32G5x3 Series

13

 /* compare the data written and read out until they are equal */

 if(memory_compare(rx_buffer, tx_buffer, buf_size)){

 if(count1 == 0){

 /* the first time read-back verification is correct,record the down limit */

 down_dlstcnt = temp_dlstcnt;

 }

 /* read back verification succeeds once, count1 is incremented by one */

 count1++;

 if(temp_dlstcnt == 127){

 /* record the up limit.

 If the count is 127 and the read-back verification is correct,

 the up limit is recorded as 127 */

 up_dlstcnt = temp_dlstcnt;

 break;

 }

 }

 else{

 /* read back verification fails once, count2 is incremented by one */

 count2++;

 }

 /* read back and verify once, count3 is incremented by one */

 count3++;

 if((count3 == 1) && (count2 == 1)){

 flag1 = 1;

 } else if((count3 == 1) && (count1 == 1)){

 flag2 = 1;

 }

 if((flag1 == 1) && (count1 == 1)){

 flag2 = 1;

 count1 += count2;

 } else if((flag2 == 1) && (count3 != count1)){

 /* read-back verification runs from success to failure,

 record the up limit */

 up_dlstcnt = temp_dlstcnt;

 break;

 }

 temp_dlstcnt++;

 }

AN210
QSPI Clock Adjustment Method in High-speed Mode for

GD32G5x3 Series

14

 temp_dlstcnt = (down_dlstcnt + up_dlstcnt)/2;

 /* use the calculated delay line step count value to configure*/

 CPDM_CTL = CPDM_CTL_CPDMEN | CPDM_CTL_DLSEN;

 CPDM_CFG = (temp_dlstcnt << 8U) | 1;

 CPDM_CTL = CPDM_CTL_CPDMEN;

 qspi_disable();

 qspi_delay_scan_enable();

 for(k = 0; k < 20; k++);

 qspi_delay_scan_disable();

 qspi_enable();

Table 3-4. Fine adjustment of the receiving clock code (RCKSEL = 1)

 count1 = 0;

 count2 = 0;

 count3 = 0;

 flag1 = 0;

 flag2 = 0;

temp_dlstcnt = 0;

 k = 0;

 /* select DQS as receive clock */

qspi_receive_clock_sel(QSPI_RECEIVE_CLOCK_DQS);

 while(temp_dlstcnt <= 127){

 /* configure the delay step count value */

 CPDM_CTL = CPDM_CTL_CPDMEN | CPDM_CTL_DLSEN;

 CPDM_CFG = (temp_dlstcnt << 8U) | 1;

 CPDM_CTL = CPDM_CTL_CPDMEN;

 qspi_cmd.instruction = 0xED;

 qspi_cmd.instruction_mode = QSPI_INSTRUCTION_4_LINES;

 qspi_cmd.addr = 0x1000;

 qspi_cmd.addr_mode = QSPI_ADDR_4_LINES;

 qspi_cmd.addr_size = QSPI_ADDR_24_BITS;

 qspi_cmd.altebytes = 0xFE;

 qspi_cmd.altebytes_mode = QSPI_ALTE_BYTES_4_LINES;

 qspi_cmd.altebytes_size = QSPI_ALTE_BYTES_8_BITS;

 qspi_cmd.data_mode = QSPI_DATA_4_LINES;

 qspi_cmd.data_length = 1;

AN210
QSPI Clock Adjustment Method in High-speed Mode for

GD32G5x3 Series

15

 qspi_cmd.dummycycles = 15;

 qspi_cmd.sioo_mode = QSPI_SIOO_INST_EVERY_CMD;

 qspi_cmd.trans_rate = QSPI_TCFG_DDREN;

 qspi_cmd.trans_delay = 0;

 qspi_command_config(&qspi_cmd);

 QSPI_DTLEN = buf_size - 1;

 qspi_data_receive(rx_buffer);

 /* wait for the data receive completed */

 while(0U == qspi_flag_get(QSPI_FLAG_TC)){

 }

 /* clear the TC flag */

 qspi_flag_clear(QSPI_FLAG_TC);

 qspi_disable();

 qspi_enable();

 qspi_cmd.instruction = 0xED;

 qspi_cmd.instruction_mode = QSPI_INSTRUCTION_4_LINES;

 qspi_cmd.addr = 0x1000;

 qspi_cmd.addr_mode = QSPI_ADDR_4_LINES;

 qspi_cmd.addr_size = QSPI_ADDR_24_BITS;

 qspi_cmd.altebytes = 0xFE;

 qspi_cmd.altebytes_mode = QSPI_ALTE_BYTES_4_LINES;

 qspi_cmd.altebytes_size = QSPI_ALTE_BYTES_8_BITS;

 qspi_cmd.data_mode = QSPI_DATA_4_LINES;

 qspi_cmd.data_length = 1;

 qspi_cmd.dummycycles = 15;

 qspi_cmd.sioo_mode = QSPI_SIOO_INST_EVERY_CMD;

 qspi_cmd.trans_rate = QSPI_TCFG_DDREN;

 qspi_cmd.trans_delay = 0;

 qspi_command_config(&qspi_cmd);

 QSPI_DTLEN = buf_size - 1;

 qspi_data_receive(rx_buffer);

 /* wait for the data receive completed */

 while(0U == qspi_flag_get(QSPI_FLAG_TC)){

 }

 /* clear the TC flag */

 qspi_flag_clear(QSPI_FLAG_TC);

 /* compare the data written and read out until they are equal */

AN210
QSPI Clock Adjustment Method in High-speed Mode for

GD32G5x3 Series

16

 if(memory_compare(rx_buffer, tx_buffer, buf_size)){

 if(count1 == 0){

 /* the first time read-back verification is correct,record the down limit */

 down_dlstcnt = temp_dlstcnt;

 }

 /* read back verification succeeds once, count1 is incremented by one */

 count1++;

 if(temp_dlstcnt == 127){

 /* record the up limit.

 If the count is 127 and the read-back verification is correct,

 the up limit is recorded as 127 */

 up_dlstcnt = temp_dlstcnt;

 break;

 }

 }

 else{

 /* read back verification fails once, count2 is incremented by one */

 count2++;

 }

 /* read back and verify once, count3 is incremented by one */

 count3++;

 if((count3 == 1) && (count2 == 1)){

 flag1 = 1;

 } else if((count3 == 1) && (count1 == 1)){

 flag2 = 1;

 }

 if((flag1 == 1) && (count1 == 1)){

 flag2 = 1;

 count1 += count2;

 } else if((flag2 == 1) && (count3 != count1)){

 /* read-back verification runs from success to failure,

 record the up limit */

 up_dlstcnt = temp_dlstcnt;

 break;

 }

 temp_dlstcnt++;

 }

AN210
QSPI Clock Adjustment Method in High-speed Mode for

GD32G5x3 Series

17

 temp_dlstcnt = (down_dlstcnt + up_dlstcnt)/2;

 /* use the calculated delay line step count value to configure*/

 CPDM_CTL = CPDM_CTL_CPDMEN | CPDM_CTL_DLSEN;

 CPDM_CFG = (temp_dlstcnt << 8U) | 1;

 CPDM_CTL = CPDM_CTL_CPDMEN;

AN210
QSPI Clock Adjustment Method in High-speed Mode for

GD32G5x3 Series

18

4. Revision history

Table 4-1. Revision history

Revision No. Description Date

1.0 Initial Release June.30, 2024

AN210
QSPI Clock Adjustment Method in High-speed Mode for

GD32G5x3 Series

19

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any

product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and

treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and

treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and

brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability

arising out of the application or use of any Product described in this document. Any information provided in this document is provided

only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality

and safety of any application made of this information and any resulting product. Except for customized products which has been

expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business,

industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components

in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control

instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments,

life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution

control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury,

death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling

the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers

shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising

from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it’s suppliers

and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or

death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes,

corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2024 GigaDevice – All rights reserved

	Table of Contents
	List of Tables
	1. Introduction
	2. Clock sampling point adjustment function bit introduction
	3. Clock sampling point adjustment function software implementation
	3.1. Adjust the output clock
	3.2. Coarse adjustment of the receiving clock
	3.3. Fine adjustment of the receiving clock

	4. Revision history

