GigaDevice Semiconductor Inc.

GD32G5x3 Trigonometric Math Unit
User Guide

Application Note
AN207

Revision 1.0

(May. 2024)

e ANZ209

GigaDevice GD32G5x3 Trigonometric Math Unit User Guide

Table of Contents

Table of CONENTS ... 2
LiSt Of TADIES ... 3
L PIEFACE. ... e 4
2. TMU INtrodUCIONouiiiiiiiiiiii e 5
21. Mode configuration ... 5
2.2, Data format and configuration....................cccc 6
3. Code configuration...............ccooiii i 8
3.1. Software write and read dataexample..................oiiii 8
3.2. DMA write and read data example.............ccoooiiiiiiiiiiiii 10
4. ReVISION NISTOrY ..o 14

©

AN209
GD32G5x3 Trigonometric Math Unit User Guide

GigaDevice
List of Tables
Table 2-1. TMU mode configuration ... 5
Table 2-2. Input data configurationccooiii i 6
Table 2-3. Output data configurationcociii i 6
Table 3-1. TMU module configuration (q1.31 data format, DMA not used)ccccccoviiiinnnn. 8
Table 3-2. Software write and read data (q1.31 data format)ccocooi, 9
Table 3-3. TMU module configuration (floating-point data format).......................ccoccoe, 9
Table 3-4. Software write and read data (floating-point data format)coo 10
Table 3-5. DMA module configuration.................cccooiiii e 10
Table 3-6. TMU module configuration (DMA used)............ccccooiiiiiiiiiiiiii e 12
Table 3-7. DMA write and read data (q1.31 data format)cccciiiii e, 12
Table 3-8. DMA write and read data (floating-point data format)cccoo 12
Table 4-1. ReViSion hisStOry ..o 14

©

GigaDevice

AN209
GD32G5x3 Trigonometric Math Unit User Guide

1.

Preface

This document is specifically designed for engineers developing with GD32 MCUs. It mainly

introduces the functional configuration and usage precautions of the trigopnometric math unit
(TMU) in the GD32G5x3 series devices. The aim is to help GD32 MCU developers use the
TMU correctly and quickly, thereby shortening the development cycle.

The TMU is a fully configurable block that execute common trigonometric and arithmetic

operations. The TMU can reduce the burden of CPU, and it is usually used in motor control,

signal processing and many other applications.

Characteristics of GD32G5x3 series TMU:

Supports 10 kinds of functions.

Interrupt and DMA requests.

The fixed point q1.31 / gq1.15 format or IEEE754 32-bit single precision floating-point
format is configurable.

Programmable precision.

CORDIC-algorithm core: circular system and hyperbolic system, and supports rotation
pattern and vectoring pattern.

©

GigaDevice

AN209
GD32G5x3 Trigonometric Math Unit User Guide

2.

2.1.

TMU introduction

The TMU in the GD32G5x3 series solves trigonometric and other complex mathematical
functions through the CORDIC (Coordinated Rotation Digital Computer) algorithm. The
CORDIC algorithm approximates vector rotations iteratively, breaking the rotation operation
into a series of small rotation steps, each involving only simple shifts and additions or
subtractions, making it very suitable for hardware implementation.

The ITRTNUMI[3:0] bit field of the TMU_CS register is used to configure the number of
iterations for the CORDIC algorithm core. The more iterations, the higher the calculation
accuracy.

Mode configuration

Under the circular system, the CORDIC algorithm can solve trigonometric functions. The
circular system is divided into rotation mode and vectoring mode; the rotation mode is used
to calculate cos and sin, while the vectoring mode is used to calculate atan2 and modulus.

Under the hyperbolic system, the CORDIC algorithm can solve a series of transcendental

functions. In rotation mode, it can solve cosh and sinh, and thus calculate
e*=sinh (x) + cosh (x). In vectoring mode, it can perform inverse tanh™, logarithmic functions,

and square root operations.

The MODE[3:0] bit-field in TMU_CS register is used to configure the mode of the CORDIC
algorithm core. Different modes use different systems (circular or hyperbolic) and different
patterns (rotation or vectoring). Detailed configuration refer to Table 2-1. TMU mode

configuration.

Table 2-1. TMU mode configuration

The first | The second The first The second
Mode | . System and Pattern

input data | input data |output data | output data
Mode 0 0 m m*cos(8) m*sin(0) Circular, Rotation
Mode 1 0 m m*sin(0) m*cos(0) Circular, Rotation
Mode 2 X y atan2 (y,x) fx2+y2 Circular, Vectoring
Mode 3 X y Ix2+y2 atan2 (y,x) Circular, Vectoring
Mode 4 X None tan™ (x) None Circular, Vectoring
Mode 5 X None cosh (x) sinh (x) Hyperbolic, Rotation
Mode 6 X None sinh (x) cosh (x) Hyperbolic, Rotation
Mode 7 X None tanh™ (x) None Hyperbolic, Vectoring
Mode 8 X None In (x) None Hyperbolic, Vectoring
Mode 9 X None Vx None Hyperbolic, Vectoring

©

AN209
GD32G5x3 Trigonometric Math Unit User Guide

GigaDevice
Although TMU algorithm can only calculate a small number of functions directly, more
functions can be obtained indirectly. For example, e€*=sinh (x)+ cosh (x).

2.2. Data format and configuration

The input and output data of the TMU in the GD32G5x3 series devices can be configured in
g1.31, q1.15 fixed-point format, and IEEE754 32-bit single-precision floating-point format.

When the input data is in fixed point format (IFLTEN=0), the IWIDTH bit in TMU_CS register
is used to configure the fixed point format of the input data. When the input data is in floating-
point format (IFLTEN=1), the configuration of the IWIDTH bit is invalid. Each mode requires
a different number of input data (for example, mode 0 requires two inputs and mode 5 requires
only one), and can be configured via the INUM bit of the TMU_CS register. Detailed
configuration refer to Table 2-2. Input data configuration.

Note: When the input data is configured in g1.15 format, the TMU_IDATA register only needs
to be written once, the first input data in the low half word, the second input data in the high
half word. If the mode only needs one input data, only the low half word is used, and the high
half word is not used.

Table 2-2. Input data configuration

IWIDTH bit | INUM bit | IFLTEN bit Data format Write operation to TMU_IDATA
0 0 0 g1.31 fixed point Only one write operation
0 1 0 g1.31 fixed point Two successive write operation
1 0 0 gl.15 fixed point Only one write operation
1 1 0 g1.15 fixed point Not available
X 0 1 IEEE754 32-bit single Only one write operation
X 1 1 precision floating-point Two successive write operation

When the output data is in fixed point format (OFLTEN=0), the OWIDTH bit in TMU_CS
register is used to configure the fixed point format of the output data. When the output data is
in floating-point format (OFLTEN=1), the configuration of the OWIDTH bit is invalid. Each
mode requires a different number of output data (for example, mode 0 has two output datas
and mode 8 only has one), and can be configured via the ONUM bit of the TMU_CS register.
Detailed configuration refer to Table 2-3. Output data confiquration.

Note: When the output data is configured in g1.15 format, the TMU_IDATA register only needs
to be read once, the first output data in the low half word, the second output data in the high
half word. If the mode only needs one output data, only the low half word is used, and the
high half word is not used.

Table 2-3. Output data configuration

OWIDTH bit | ONUM bit | OFLTEN bit Data format Read operation to TMU_ODATA
0 0 0 g1.31 fixed point Only one read operation
0 1 0 g1.31 fixed point Two successive read operation

e ANZ209

GD32G5x3 Trigonometric Math Unit User Guide

GigaDevice
OWIDTH bit | ONUM bit | OFLTEN bit Data format Read operation to TMU_ODATA
1 0 0 g1.15 fixed point Only one read operation
1 1 0 g1.15 fixed point Not available
X 0 1 IEEE754 32-bit single Only one read operation
X 1 1 precision floating-point Two successive read operation

©

AN209
GD32G5x3 Trigonometric Math Unit User Guide

GigaDevice
3. Code configuration
The input and output data of the TMU can be written and read through software and DMA.
This chapter introduces how to configure the TMU module for function calculations based on
these two methods.
3.1. Software write and read data example

Taking Mode 1 as an example, to calculate the sine value m*sin(8) when the input and
output data are both in q1.31 fixed-point format (IFLTEN=0 and OFLTEN=0), the TMU module
configuration is shown in Table 3-1. TMU module configuration (g1.31 data format, DMA

not used).

Customers can configure the number of iterations according to the required accuracy. 24

iterations are configured in this example. In Mode 1, the scaling factor FACTORJ[2:0] is not
available. When the input and output data are directly written and read through software, both
the DMA read and write requests are disabled. Mode 1 has two input data and two output
data. When the input data is in q1.31 fixed-point format, it needs to be written twice
consecutively. When the output data is in q1.31 fixed-point format, it needs to be read twice
consecutively.

Table 3-1. TMU module configuration (q1.31 data format, DMA not used)
/* enable the clock */
rcu_periph_clock_enable(RCU_TMU);

tmu_parameter_struct tmu_init_struct;
tmu_struct_para_init(&tmu_init_struct);

/* reset the TMU */

tmu_deinit();

[* configure TMU peripheral */

tmu_init_struct.mode = TMU_MODE_SIN;
tmu_init_struct.iterations_number = TMU_ITERATION_STEPS_24;
tmu_init_struct.scale = TMU_SCALING_FACTOR_1;
tmu_init_struct.output_floating = TMU_OUTPUT_FLOAT_DISABLE;
tmu_init_struct.input_floating = TMU_INPUT_FLOAT_DISABLE;
tmu_init_struct.dma_read = TMU_READ_DMA_DISABLE;
tmu_init_struct.dma_write = TMU_WRITE_DMA_DISABLE;
tmu_init_struct.read_times = TMU_READ_TIMES_2;
tmu_init_struct.write_times = TMU_WRITE_TIMES_2;
tmu_init_struct.output_width = TMU_OUTPUT_WIDTH_32;
tmu_init_struct.input_width = TMU_INPUT_WIDTH_32;

tmu_init(&tmu_init_struct);

When the datas to be calculated are in floating-point type, data type conversion is needed.
8

c ANZ209

GigaDevice GD32G5x3 Trigonometric Math Unit User Guide

After converting to q1.31 format, write consecutively to the TMU_IDATA register. Similarly, the
output data can also be converted to floating-point type.

Additionally, when the input or output data is in fixed-point format and the supported data
range is small, if m exceeds the data range, it needs to be scaled down to the [0,1) range
before writing to the register, and then the output data is proportionally scaled up.

Table 3-2. Software write and read data (q1.31 data format)

/* the first input data: angle */

float theta = DEMO_PI / 2.0f;

/* the second input data: modulus */

float m = 100.0f;

/* the calculation results: result=m*sin(theta)*/
float result = 0;

/* TMU input data in g31 format */

uint32_t in_data_q31[2] = {0};

/* TMU output data in g31 format */

uint32_t out_data_q31[2] = {0};

uint16_t scaling_factor = 128U;

[* software processes the input data */
in_data_qg31[0] = (uint32_t)((int32_t)(theta / DEMO_PI * 0x80000000V));
in_data_qg31[1] = (uint32_t)((int32_t)(m / scaling_factor * 0x80000000UV)));

/* configure TMU input and output data in g31 format */
tmu_config_q31();

/* write data to start TMU */
tmu_two_q31_write(in_data_q31[0], in_data_q31[1]);

/* read two output data */
tmu_two_q31_read(&out_data_q31[0], &out_data_q31[1]);

/* software processes the output data */
result = scaling_factor * (float)((int32_t)out_data_qg31[0]) / 0x80000000U;

When the input and output data are in IEEE754 32-bit single precision floating-point format
(IFLTEN=1 and OFLTEN=1), the TMU module configuration is basically the same as that in
Table 3-1. TMU module configuration (g1.31 data format, DMA not used), just enable the

single-precision floating point format of the input and output data, shown in Table 3-3. TMU
module configuration (floating-point data format). Mode 1 has two input data and two

output data. When the input and output data are in single-precision floating-point format, it
needs to be written and read twice continuously.

Table 3-3. TMU module configuration (floating-point data format)
tmu_init_struct.output_floating = TMU_OUTPUT_FLOAT_ENABLE;

GigaDevice

AN209
GD32G5x3 Trigonometric Math Unit User Guide

3.2.

| tmu_init_struct.input_floating = TMU_INPUT_FLOAT_ENABLE; |

When the input and output data are both in IEEE754 32-bit single precision floating-point
format (IFLTEN=1 and OFLTEN=1), a large range of data is supported. When the input data
does not exceed the range described in the user manual, the floating-point data can be
directly written to the TMU_IDATA register. Similarly, the calculation results can be obtained
by reading the TMU_ODATA register directly. If the input data or the data in the operation is
too large according to the specified floating-point format, the OVRF flag bit of the TMU_CS
register will be set.

Table 3-4. Software write and read data (floating-point data format)

/* the first input data: angle */

float theta = DEMO_PI / 2.0f;

/* the second input data: modulus */

float m = 100.0f;

/* the calculation results: result=m*sin(theta)*/
float result = 0;

/* TMU output data in floating point format */
float out_data_f32[2] = {0};

/* configure TMU input and output data in floating point format */
tmu_config_f32();

* write data to start TMU */

tmu_two_f32_write(theta / DEMO_PI, m);

/* read two output data */

tmu_two_f32_read(&out_data_f32[0], &out_data_f32[1]);

DMA write and read data example

In addition to software write, the TMU also supports writing and reading data through the DMA
module. When the WDEN bit of the TMU_CS is set to 1, a DMA write request is generated
when there is no TMU operation pending. When the RDEN bit is set to 1, a DMA read request
is generated after the TMU operation is completed. The DMA module configuration is shown
in Table 3-5. DMA module configuration. When the data is in IEEE754 32-bit single
precision floating-point format, replace the memory address in the DMA transfer with the

floating-point data address.

Mode 1 has two input data and two output data. When the input and output data are in q1.31
fixed-point format or 32-bit single precision floating-point format, they need to be written and
read twice consecutively. Therefore, the width of the DMA read and write channels is 32 bits,
and the quantity is 2.

Table 3-5. DMA module configuration
/* enable DMA1 clock */
rcu_periph_clock_enable(RCU_DMA1);

10

GigaDevice

AN209

GD32G5x3 Trigonometric Math Unit User Guide

/* enable DMAMUX clock */
rcu_periph_clock_enable(RCU_DMAMUX);

tmu_parameter_struct tmu_init_struct;

/* TMU write request: DMAL channel */
dma_struct_para_init(&dma_init_struct);

dma_deinit(DMA1, DMA_CH1);

dma_init_struct.request = DMA_REQUEST_TMU_INPUT,;
dma_init_struct.direction = DMA_MEMORY_TO_PERIPHERAL;
dma_init_struct. memory_addr = (uint32_t)in_data_q31;
dma_init_struct memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_init_struct. memory_width = DMA_MEMORY_WIDTH_32BIT;
dma_init_struct.number = 2;

dma_init_struct.periph_addr = TMU_WRITE_ADDRESS;
dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_32BIT;
dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
dma_init(DMA1, DMA_CH1, &dma_init_struct);
dma_circulation_disable(DMA1, DMA_CH1);

/* TMU read request: DMAL channe2 */
dma_struct_para_init(&dma_init_struct);

dma_deinit(DMA1, DMA_CH2);

dma_init_struct.request = DMA_REQUEST_TMU_OUTPUT;
dma_init_struct.direction = DMA_PERIPHERAL_TO_MEMORY;
dma_init_struct.memory_addr = (uint32_t)out_data_qg31;
dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_init_struct. memory_width = DMA_MEMORY_WIDTH_32BIT;
dma_init_struct.number = 2;

dma_init_struct.periph_addr = TMU_READ_ADDRESS;
dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_32BIT;
dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH,;
dma_init(DMA1, DMA_CH2, &dma_init_struct);

/* configure DMA mode */

dma_circulation_disable(DMA1, DMA_CH?2);

/* enable DMA transfer */

dma_flag_clear(DMA1, DMA_CH1, DMA_FLAG_FTF);
dma_flag_clear(DMA1, DMA_CH2, DMA_FLAG_FTF);
dma_channel_enable(DMA1, DMA_CHL1);
dma_channel_enable(DMA1, DMA_CH?2);

11

GigaDevice

AN209
GD32G5x3 Trigonometric Math Unit User Guide

When DMA is used, the TMU module configuration is basically the same as Table 3-1. TMU
module configuration (g1.31 data format, DMA not used), only needs to enable read and

write DMA requests.

Table 3-6. TMU module configuration (DMA used)
tmu_init_struct.dma_read = TMU_READ_DMA_ENABLE;
tmu_init_struct.dma_write = TMU_WRITE_DMA_ENABLE;

When the input and output data are both in single-precision floating-point format and do not
exceed the range described in the user manual, directly write the floating-point data to the
TMU_IDATA register and read the TMU_ODATA register to get the calculation result.

After configuring the DMA and TMU modules, wait for the DMA transfer to complete before
reading the results and processing them, as shown in Table 3-7. DMA write and read data
(91.31 data format) and Table 3-8. DMA write and read data (floating-point data format).

Table 3-7. DMA write and read data (q1.31 data format)
/* the first input data: angle */

float theta = DEMO_PI / 2.0f;

/* the second input data: modulus */

float m = 100.0f;

/* the calculation results: result=m*sin(theta)*/

float result = 0;

/* TMU input data in q31 format */
uint32_t in_data_q31[2] = {0};

/* TMU output data in g31 format */
uint32_t out_data_q31[2] = {0};

uintl6_t scaling_factor = 128U;

* software processes the input data */
in_data_qg31[0] = (uint32_t)((int32_t)(theta / DEMO_PI * 0x80000000V));
in_data_g31[1] = (uint32_t)((int32_t)(m / scaling_factor * 0x80000000U));

I* configure TMU input and output data in q31 format */
tmu_config_q31();

I* configure DMA when TMU in g31 format */

dma_config_qg31();

/* wait for the DMA transfer complete */

while(RESET == dma_flag_get(DMA1, DMA_CH2, DMA_FLAG_FTF));
result = scaling_factor * (float)((int32_t)out_data_qg31[0]) / 0x80000000U;

Table 3-8. DMA write and read data (floating-point data format)

/* the first input data: angle */
float theta = DEMO_PI / 2.0f;

/* the second input data: modulus */

12

©

GigaDevice

AN209

GD32G5x3 Trigonometric Math Unit User Guide

float m = 100.0f;

/* the calculation results: result=m*sin(theta)*/
float result = 0;

/* TMU output data in floating point format */
float out_data_f32[2] = {0};

/* software processes the input data */

in_data_f32[0] = theta / DEMO_PI;

in_data_f32[1] = m;

[* configure TMU input and output data in floating point format */
tmu_config_f32();

/* configure DMA when TMU in floating point format */
dma_config_f32();

/* wait for the DMA transfer complete */

while(RESET == dma_flag_get(DMA1, DMA_CH2, DMA_FLAG_FTF));

13

GigaDevice

ANZ209

GD32G5x3 Trigonometric Math Unit User Guide

4.

Revision history

Table 4-1. Revision history

Revision No.

Description

Date

1.0

Initial Release

May.25 2024

14

c AN209

GigaDevice GD32G5x3 Trigonometric Math Unit User Guide

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any
product of the Company described in this document (the “Product”), is owned by the Company under the intellectual property laws and
treaties of the People’s Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and
treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and

brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability
arising out of the application or use of any Product described in this document. Any information provided in this document is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality
and safety of any application made of this information and any resulting product. Except for customized products which has been
expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business,
industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components
in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control
instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments,
life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution
control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury,
death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling
the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers
shall and hereby do release the Company as well as it’s suppliers and/or distributors from any claim, damage, or other liability arising
from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers
and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or

death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes,

corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2024 GigaDevice — All rights reserved

15

	Table of Contents
	List of Tables
	1. Preface
	2. TMU introduction
	2.1. Mode configuration
	2.2. Data format and configuration

	3. Code configuration
	3.1. Software write and read data example
	3.2. DMA write and read data example

	4. Revision history

