GigaDevice Semiconductor Inc.

GD32G5x3 Comparator User Guide

Application Note AN198

Revision 1.0

(Nov. 2024)

Table of Contents

Table of Contents	2
List of Figures	3
List of Tables	4
1 Introduction	5
2 GD32G5x3 Comparator Introduction	6
2.1 Input and output connections	6
2.2 Inner hysteresis and propagation delay	
2.3 Inducments of static offset error	9
2.3.1 Inverting input connected to DAC	
2.3.2 Inverting input connected to voltage scaler	
2.3.3 Inverting input connected to external voltage	
2.4 Calibration of static offset error	
3 Application Cases	
3.1 Protection and CMP	
3.1.1 HRTIMER fault input	
3.1.2 CMP output connected to fault input	
3.1.3 Multiple protection	
3.2 Cycle-by-cycle protection	
3.3 AC zero detection	17
4 Revision history	

List of Figures

Figure 2-1. GD32G5x3 comparator system	6
Figure 2-2. GD32G5x3 CMP inner hysteresis illustration	8
Figure 2-3. CMP propagation delay illustration	8
Figure 3-1. GD32G5x3 fault input block diagram	12
Figure 3-2. Fault input channel and HRTIMER output stage	
Figure 3-3. Short protection: GD32G5x3 CMP connection	15
Figure 3-4. Multiple over current protection using inner and outer signals	
Figure 3-5. CBC protection theory	
Figure 3-6. CBC: GD32G5x3 CMP connection	
Figure 3-7. CBC: configuration in AC zero dead zone	17
Figure 3-8. Suppress AC current peak at AC zero crossing for Totem-pole PFC	
Figure 3-9. Totem-pole PFC zero detection via GD32G5x3 CMP	

List of Tables

Table 2-1. GD32G5x3 comparator input and output connections	6
Table 2-2. GD32G5x3 CMP inner hysteresis parameter ⁽¹⁾	8
Table 2-3. GD32G5x3 CMP propagation delay ⁽¹⁾	9
Table 2-4. GD32G5x3 CMP consumption ⁽¹⁾	9
Table 2-5. GD32G5x3 CMP offset voltage ⁽¹⁾	9
Table 2-6. GD32G5x3 voltage scaler offset voltage ⁽¹⁾	10
Table 3-1. Fault channel mapping	13
Table 3-2. Fault input channel digital filter configuration	13
Table 3-3. GD32G5x3 CMP and fault protection response time ⁽¹⁾	15
Table 3-4. GD32G5x3 CMP and fast external event response time ⁽¹⁾	
Table 3-5. GD32G5x3 1MSPS DAC setting time ⁽¹⁾	17

1 Introduction

This document is specifically designed for engineers developing with GD32G5x3 series devices, with basic functions and typical application cases displayed.

In Chapter 2, basic specifications and design functions are illustrated, and discussion about static voltage offset problem and calibration method is highlighted.

In Chapter 3, typical application cases about GD32G5x3 comparators in digital switchingmode power supply control and motor control, proving advantages of GD32G5x3 comparators. Moreover, in order to learn more application methods about fault protection and external event of GD32G5x3 HRTIMER, please refer to 'AN203 GD32G5x3 High-Resolution Timer User Guide'.

2

GD32G5x3 Comparator Introduction

Eight rail-to-rail comparators (CMPs) CMP0 ~ CMP7 supplied by V_{DDA} are integrated in GD32G5x3, which can realize low propagation delay, programmable inner hysteresis voltage, CMP output blanking, multiple input and output sources of CMP, CMP output hold on during system reset, etc.

In *Figure 2-1. GD32G5x3 comparator system*, basic diagram of GD32G5x3 CMP is presented with CMP0 as example, fitting for CMP1 ~ CMP7 at the same time.

2.1 Input and output connections

<u>Table 2-1. GD32G5x3 comparator input and output connections</u> shows input and output connections sources (I/O, inner signal sources) of GD32G5x3 CMPs; most importantly, input and output channels of CMP must be configured as analog mode.

	CMP0	CMP1	CMP2	CMP3	CMP4	CMP5	CMP6	CMP7
CMP non								
inverting			PAO	DRO	DB12	DR11		DC2
inputs								
connected	FDI	FAJ	FUI	FE/	FDIZ	FDT	FD14	FE9
to I/Os								
СМР								
inverting		DAE						000
inputs								
connected	PAU	PAZ	PCU	PBZ	PD13	PBID	PBIZ	PD9
to I/Os								

Table 2-1. GD32G5x3 comparator input and output connections

	CMP0	CMP1	CMP2	CMP3	CMP4	CMP5	CMP6	CMP7
СМР	V _{REFINT} /4,	V _{REFINT} /4,	V _{REFINT} /4,	V _{REFINT} /4,	V _{REFINT} /4,	V _{REFINT} /4,	V _{REFINT} /4,	V _{REFINT} /4,
inverting	V _{REFINT} /2,	V _{REFINT} /2,	V _{REFINT} /2,	V _{REFINT} /2,	V _{REFINT} /2,	V _{REFINT} /2,	V _{REFINT} /2,	V _{REFINT} /2,
inputs	V _{REFINT} *3/	V _{REFINT} *3/	V _{REFINT} *3/	V _{REFINT} *3	V _{REFINT} *3/	V _{REFINT} *3/	V _{REFINT} *3/	V _{REFINT} *3/
connected	4,	4,	4,	/4,	4,	4,	4,	4,
to internal	Vrefint,	Vrefint,	Vrefint,	Vrefint,	Vrefint,	Vrefint,	Vrefint,	Vrefint,
signals	DAC2_O	DAC2_O	DAC2_OU	DAC2_OU	DAC3_OU	DAC3_OU	DAC3_OU	DAC3_OU
	UT0	UT1	Т0	T1	Т0	T1	Т0	T1
	DAC0_O	DAC0_O	DAC0_OU	DAC0_OU	DAC0_OU	DAC1_OU	DAC1_OU	DAC1_OU
	UT0	UT1	Т0	Т0	T1	Т0	Т0	T1
СМР	PA0	PA2						
outputs	PA6	ΡΔ7	PB7	PB1	PAG	PC6	PC8	PA13
connected	PA11	PA12	PB15	PB6	PC7	PA10	PA8	PA14
to I/Os	PB8	PB9	PC2	PB14	1.01	17110	1710	.,
	PF4	1 20						
СМР								
outputs					•			
connected								
to EXTI								
СМР								
outputs								
connected				•	Ð			
to								
TRIGSEL								
СМР								
outputs					•			
connected								
CIVIP								
outputs	TIME	R0, TIMER	1, TIMER2,	TIMER3, T	IMER4, TI	MER7, TIM	ER19, LPT	IMER,
to internal				HRTI	MER			
signals								
CMP								
outputs	BREAK0(TIMER0, TIMER7, TIMER14, TIMER15, TIMER16, TIMER19)							
connected								
to internal			BREAK	1(TIMER0,	TIMER7, TI	MER19)		
signals								

2.2 Inner hysteresis and propagation delay

As illustrated in <u>Figure 2-2. GD32G5x3 CMP inner hysteresis illustration</u>, programmable inner hysteresis voltage V_{hyst} can be realized in GD32G5x3 CMP, preventing wrong output logic due to input signal noise. As shown in <u>Table 2-2. GD32G5x3 CMP inner hysteresis</u> <u>parameter(1)</u>, HST[2:0] of CMPy_CS register is used to configure inner hysteresis voltage of CMPy (y = 0..7).

Figure 2-2. GD32G5x3 CMP inner hysteresis illustration

Table 2-2. GD32G5x3 CMP inner hysteresis parameter⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
		CMPxHST[2:0] = 000	_	0	-		
		CMPxHST[2:0] = 001	6.8	8.8	15.1		
	Hysteresis Voltage	CMPxHST[2:0] = 010	13.6	17.6	30.4		
M		CMPxHST[2:0] = 011	20.4	26.5	46	m)/	
V hyst		nysteresis voltage	CMPxHST[2:0] = 100	25.7	35.5	62.1	
			CMPxHST[2:0] = 101	28.8	44.6	78.9	
		CMPxHST[2:0] = 110	30.9	53.9	96.6]	
		CMPxHST[2:0] = 111	32.5	63.3	116.3		

(1) Value guaranteed by design, not 100% tested in production.

As illustrated in *Figure 2-3. CMP propagation delay illustration*, propagation delay of CMP is defined as total time betweeen input voltage exceeds comparing voltage threshold and output voltage signal exceeds 0.5V_{DDA}.

Typical propagation delay of GD32G5x3 CMP is 35ns, as shown in <u>Table 2-3. GD32G5x3</u> <u>CMP propagation delay</u>, while common comparator like LM393 suffers several-hundred ns propagation delay.

Table 2-3. GD32G5x3 CMP propagation delay⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t⊳	Propagation delay for 200mV step with 100 mV overdrive	50pF load on output		35		ns

(1) Value guaranteed by sample, not 100% tested in production.

Table 2-4. GD32G5x3 CMP consumption⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	Current concurrention from	Static	_	433	436	
I _{DDA(CMP)}	V _{DDA}	With 50 kHz ±100 mV		392		uA
		overdrive square signal				

(1) Value guaranteed by design, not 100% tested in production.

As for CMP design, conflicts naturally exist between propagation delay and consumption. GD32G5x3 CMP optimizes propagation delay and curent consumption simutaneously, with <u>Table 2-4. GD32G5x3 CMP consumption</u> provided.

2.3 Inducments of static offset error

Static offset error is a key index about CMP threshold accracy. For example, if 1.65V is on inverting input of CMP with ±30mV static offset error, the voltage threshold of CMP non-inverting input causing CMP output inverts won't be fixed at 1.65V, varying from 1.62V~1.68V (Inner hysteresis voltage is ignored for simplicity).

Based on various source connections of inverting inputs of GD32G5x3 CMP, static offset error includes CMP itself offset error, and also it can include:

- DAC output offset error, with inverting input connected to DAC.
- Voltage scaler offset error, with inverting input connected to voltage scaler.
- External voltage reference offset error, with inverting input connected to I/O.

Table 2-5. GD32G5x3 CMP offset voltage illustrates GD32G5x3 CMP offset error.

Table 2-5. GD32G5x3 CMP offset voltage⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
M. a. i	Offect orror	Full VDDA voltage range, full		3~1		m\/
Voffset Oliset error	temperature range		-3~4		IIIV	

(1) Value guaranteed by design, not 100% tested in production.

2.3.1 Inverting input connected to DAC

In this case, static offset error includes CMP offset error and DAC offset error.

DAC output buffers are integrated in DAC0 and DAC1 of GD32G5x3 for saving external operational amplifier, which can be enable or disable flexibly.

Please refer to 'GD32G5x3 Datasheet' for original offset error of DAC and calibrated offset error of DAC(Offsetcal) with output buffer enabled.

2.3.2 Inverting input connected to voltage scaler

In this case, static offset error includes CMP offset error and voltage scaler offset error that is shown in <u>Table 2-6. GD32G5x3 voltage scaler offset voltage</u>.

Table 2-6. GD32G5x3 voltage scaler offset voltage⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{SC}	Scaler offset voltage	—	—	3.3	10	mV

(1) Value guaranteed by design, not 100% tested in production.

Enable SEN bit and BEN bit of CMPy_CS register for using GD32G5x3 voltage scale; Then, configure MSEL[2:0] of CMPy_CS register (y = 0..7) and set 1/4, 1/2, 3/4 V_{REFINT} or V_{REFINT} reference voltage to CMP inverting input. V_{REFINT} is internal 1.2V band-gap reference voltage for CMP and ADC.

2.3.3 Inverting input connected to external voltage

In this case, external DC source and resistor divider circuit sends comparing voltage to I/O pin, and thus static offset error includes CMP offset error and divider output offset error. Band-gap reference voltage can be used for supplying divider for high accuracy, which can also supply VREFP of ADC.

2.4 Calibration of static offset error

Based on Section, as for the case that inverting input is connected to inner DAC output, negative effects about static offset error can be suppressed via calibration as the following steps:

- Turn off inner hysteresis function.
- CMP non-inverting input is connected to I/O pin, which is externally supplied with the designed voltage threshold from DC source.
- CMP inverting input is connected to inner DAC output.
- Increase DAC digital value from zero slowly; when CMP output inverts, record the first corresponding DAC digital value.
- Then, decrease DAC digital value to zero slowly; when CMP output inverts again, record

the second corresponding DAC digital value.

Calibrated DAC digtal value for the designed voltage threshold is the average on the first and the second DAC digital value.

After calibration, turn on inner hysteresis function:

- When input voltage on non-inverting pin exceeds the designed threshold voltage, CMP output changes from low to high level.
- When input voltage on non-inverting pin drops under that the designed threshold voltage substracts inner hysteresis voltage, CMP output changes from high to low level.

In other word, change input voltage on non-inverting pin slowly, and record input voltage value when CMP output changes from high to low level, then calibrated inner hysteresis voltage that the designed voltage threshold substracts the recorded value can be obtained.

3 Application Cases

3.1 Protection and CMP

In digital switching-mode power supply and motor control applications, serious fault protections like short protection and surge voltage protection have very strict requirements for protection action time, from fault signal generation to predetermined system safety state.

As for MCU software protection, judge system protection on/off with ADC value in fixedfrequency software interrupt. In other word, additional tasks exist between real fault generation and protection action, including ADC samping and hold-on, software interrupt instant error, other tasks interference, which restricts software protection speed.

Therefore, hardware protection is necessary compensation for software protection, in order to realize reliable system protection.

In this section, system protection is realized via GD32G5x3 CMP and HRTIMER fault input.

3.1.1 HRTIMER fault input

Figure 3-1. GD32G5x3 fault input block diagram shows GD32G5x3 HRTIMER fault input system block diagram.

Figure 3-1. GD32G5x3 fault input block diagram

Fault input channel can receive three kinds of fault sources:

- Fault event from inner CMP output or digital input pin.
- System fault: signals coming from inside the MCU, for example the Cortex®-M33-lockup signal.
- fault event from extern event y (y=0...9).

Table 3-1. Fault channel mapping

Foult obennel	FLTyINSRC = 00	FLTyINSRC = 01	FLTyINSRC = 10
Fault channel	(chip external pin)	(internal signal)	(external event)
Fault channel 0	PA12	Comparator 1	external event 0
Fault channel 1	PA15	Comparator 3	external event 1
Fault channel 2	PB10	Comparator 5	external event 2
Fault channel 3	PB11	Comparator 0	external event 3
Fault channel 4	PB0/PC7	Comparator 2	external event 4
Fault channel 5	PC10	Comparator 4	external event 5
Fault channel 6	PC3	Comparator 6	external event 6
Fault channel 7	PC4	Comparator 7	external event 7

Basic configuration about fault input channel y (y = 0...7) can be realized via HRTIMER_FLTINCFG0 and HRTIMER_FLTINCFG1 registers.

- Configure fault input channel y connection via FLTyINSRC bit, as shown in <u>Table 3-1</u>. <u>Fault channel mapping</u>.
- Configure polarity of fault signal in fault input channel y via FLTyINP bit: if FLTyINP = 0, fault signal is active-low; if FLTyINP = 1, fault signal is active-high.
- Enable fault input channel y via FLTyINEN bit: all channels can be enabled at the same time.
- Write FLTyINPROT bit once time, and then FLTyINEN bit, FLTyINP bit, FLTyINSRC bit and FLTyINFC [3:0] bit region can be protected. Let FLTyINPROT=1, and all the aforementioned bits are read only.

FLTyINFC[3:0]	f _{samp} (Digital filter sampling frequency)	N (After N input events, digital output flips)
0000	sampling nequency)	No filter
0001	fhrtimer_ck	2
0010	fhrtimer_ck	4
0011	fhrtimer_ck	8
0100	fhrtimer_fltfck /2	6
0101	fhrtimer_fltfck /2	8
0110	fhrtimer_fltfck /4	6
0111	fhrtimer_fltfck /4	8
1000	fhrtimer_fltfck /8	6

Table 3-2. Fault input channel digital filter configuration

FLTyINFC[3:0]	f _{SAMP} (Digital filter sampling frequency)	N (After N input events, digital output flips)
1001	fhrtimer_fltfck /8	8
1010	fhrtimer_fltfck /16	5
1011	fhrtimer_fltfck /16	6
1100	fhrtimer_fltfck /16	8
1101	fhrtimer_fltfck /32	5
1110	fhrtimer_fltfck /32	6
1111	fhrtimer_fltfck /32	8

In addition, digital filter function is intergrated in the fault input channels, to prevent fault trigger caused by input signal noise. As shown in <u>Table 3-2. Fault input channel digital filter</u> <u>configuration</u>, digital filter parameters of fault input channel y (y = 0..7) can be set via FLTyINFC[3:0] bit region of HRTIMER_FLTINCFG0 and HRTIMER_FLTINCFG1 registers, where ratio between clock frequency of HRTIMER fHRTIMER_CK and clock frequency of digital filter fHRTIMER_FLTFCK can be decided by FLTFDIV[1:0] bit region, i.e. fHRTIMER_FLTFCK = fHRTIMER_CK/2^{FLTFDIV[1:0]}.

Figure 3-2. Fault input channel and HRTIMER output stage shows relationship between fault input y (y = 0..7) and HRTIMER(Slave_TIMERx, x=0...7):

- Every Slave_TIMERx has fault control register HRTIMER_STxFLTCTL: let FLTyEN=1, and fault input channel y is accepted; let FLTyEN=0, and fault input channel y is rejected. Protect FLTyEN (read only) bit via writing 1 to FLTENPROT bit one time.
- Configure Slave_TIMERx responses to fault input channel y; when fault event happens, output channels of Slave_TIMERx outputs STxCH0_O and STxCH1_O into predetermined voltage level; fault state is kept until software reset instruction (write 1 to STxCHyEN bit).
- Configure Slave_TIMERx responses to multiple fault input channels, if one of these channels exists a fault event, fault state will effect in Slave_TIMERx (Logic: OR).

3.1.2 CMP output connected to fault input

As shown in *Figure 3-3. Short protection: GD32G5x3 CMP connection*, GD32G5x3 HRTIMER fault input can directly connect to inner CMP module original output, decreasing fault signal propagation delay for the best.

Set fault input channel y connected to inner CMP output via letting FLTyINSRC=1(y = 0...7) of HRTIMER_FLTINCFG0 and HRTIMER_FLTINCFG1 registers, as shown in <u>Table 3-1</u>. <u>Fault channel mapping</u>.

As shown in *Figure 3-3. Short protection: GD32G5x3 CMP connection*, DC output short protection can be realized via GD32G5x3 CMP and HRTIMER fault input with optimal response time, which refers to *Table 3-3. GD32G5x3 CMP and fault protection response time*. Besides, inner hysteresis voltage of CMP and inner digital filter function can prevent fault trigger of short protection.

Table 3-3. GD32G5x3 CMP and fault protection response time⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Propagation delay from				
tlat(AEEV)	Analog external event	comparator CMPx_IPx input			35	ns
	response latency	pin to HRTIMER_STxCHy				
		output pin(30pF load)				

(1) Value guaranteed by design, not 100% tested in production.

3.1.3 Multiple protection

Varying from inner fault signal generated by MCU CMP output, outer fault signal may come from outer device that has integrated fault detection and outer hardware protection circuit. Therefore, inner and outer fault signals can be used at the same time to realize multiple protections with MCU software protection.

As shown in *Figure 3-4. Multiple over current protection using inner and outer signals*, inner fault signal from GD32G5x3 CMP output and outer fault signal from hall-effect current sensor can be used at the same time for AC over-current protection: configure fault channels connected to inner and outer fault singals and HRTIMER output stage responses these fault channels (Logic: OR).

Figure 3-4. Multiple over current protection using inner and outer signals

3.2 Cycle-by-cycle protection

Cycle-by-cycle(CBC) protection is widely applied in AC-DC、 DC-DC power applications. As shown in *Figure 3-5. CBC protection theory*, in the current switching cycle, PWM signal of main switch is banned when real current exceeds set value Iref; when the novel switching cycle begins, PWM signal recovers. Due to system delay of gate drivers, sampling and so on, real peak current poing lags behind set value point.

Figure 3-5. CBC protection theory

Figure 3-6. CBC: GD32G5x3 CMP connection

Symbol	Parameter Conditions		Min	Тур	Max	Unit
tlat(aee∨)		Propagation delay from				
	Analog external event	comparator CMPx_IPx input			25	n 0
	response latency	pin to HRTIMER_STxCHy			- 35	115
		output pin(30pF load)				

(1) Value guaranteed by design, not 100% tested in production.

CBC protection can be realized via GD32G5x3 CMPand HRTIMER fast external event for optimal response time, as shown in *Figure 3-6. CBC: GD32G5x3 CMP connection*. CMP

ouput internally connects to HRTIMER fast external event module; in the current switching cycle, fast external event responses to CMP output signal that current exceeds Iref and PWM is banned; PWM is recovered when the novel switching cycle begins; total response time refers to <u>Table 3-4. GD32G5x3 CMP and fast external event response time</u>⁽¹⁾.

Figure 3-7. CBC: configuration in AC zero dead zone

As for bridgeless PFC application, various CBC thresholds and various CMP output logic are obtained in AC positive and negative cycles. However, CBC protection can be realized via single GD32G5x3 CMP, as shown in *Figure 3-7. CBC: configuration in AC zero dead zone*: In the AC zero dead zone, modify DAC value and CMP configuration correspongingly; AC ero dead zone is far less than AC power cycle; it's easy for DAC to reach the steady state in the AC zero dead zone, as shown in *Table 3-5. GD32G5x3 1MSPS DAC setting time*⁽¹⁾.

Table 3-5.	GD32G5x3	1MSPS	DAC	setting	time ⁽¹⁾
------------	----------	-------	-----	---------	---------------------

Symbol	Description	Condition	s	Min	Тур	Max	Unit
	H	±1 LSB	_	1.6	2.9		
	12-bit code transition between	Normal mode, DAC output buffer ON,	±2 LSB	_	1.55	2.85	
the lowest and the highest	CL ≤ 50 pF,	±4 LSB	_	1.48	2.8	us	
	reaches the final value of		±8 LSB		1.4	2.75	1
±4LSB, ±8LSB)	±0.5LSB, ±1LSB, ±2LSB, ±4LSB, ±8LSB)	Normal mode, DAC output buffer OFF, ±1LSB CL=10 pF		_	2	3.5	

(1) Value guaranteed by design, not 100% tested in production.

3.3 AC zero detection

Totem-pole PFC topology is one of the main choices for medium to high power AC-DC application; AC zero detection and management is one of the main control challenges for Totem-pole PFC. Take the transition process from AC positive cycle to AC negative cycle as example; in order to suppress AC current peak at AC voltage zero crossing, all switches should be turned off before entering into the AC negative cycle; when the AC negative cycle begin, current peak is suppressed by a duty soft start process of boost switch, as shown in *Figure 3-8. Suppress AC current peak at AC zero crossing for Totem-pole PFC*. In other

word, zero crossing signal should lead to real AC zero crossing for leading turn-off; otherwise, zero dead zone will be larger with poor THD, and soft start process will be delay.

Figure 3-8. Suppress AC current peak at AC zero crossing for Totem-pole PFC

As shown in *Figure 3-9. Totem-pole PFC zero detection via GD32G5x3 CMP*, AC zero detection can be realized via single GD32G5x3 CMP with cooperation between CMP and HRTIMER and configuration adjustment in the AC zero dead zone, similar to *Figure 3-7. CBC: configuration in AC zero dead zone*.

With the help of programmable inner hysteresis voltage of GD32G5x3 CMP and DAC value, AC zero dead zone can be optimized conveniently and THD can be improved.

Figure 3-9. Totem-pole PFC zero detection via GD32G5x3 CMP GD32G5x3

4 Revision history

Table 4-1. Revision history

Revision No.	Description	Date		
1.0	Initial Release	Nov.12 2024		

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2024 GigaDevice - All rights reserved